Require Export Undecidability.FOL.Utils.FullSyntax.
From Undecidability.FOL.Sets Require Export ZF minZF binZF Signatures.
Import Vector.VectorNotations.
Require Import List.
Declare Scope syn.
Open Scope syn.
Import ZFSignature.
Export ZFSignature.
Notation extensional M :=
(forall x y, @i_atom _ ZF_pred_sig _ M equal ([x; y]) <-> x = y).
Definition entailment_ZFeq' phi :=
forall D (M : interp D) (rho : nat -> D), (forall sigma psi, In psi ZFeq' -> sigma ⊨ psi) -> rho ⊨ phi.
Definition entailment_HF phi :=
forall D (M : interp D) (rho : nat -> D), extensional M -> (forall sigma psi, In psi HF -> sigma ⊨ psi) -> rho ⊨ phi.
Definition entailment_HFN phi :=
forall D (M : interp D) (rho : nat -> D), extensional M -> (forall sigma psi, In psi HFN -> sigma ⊨ psi) -> rho ⊨ phi.
Definition entailment_ZF' phi :=
forall D (M : interp D) (rho : nat -> D), extensional M -> (forall sigma psi, In psi ZF' -> sigma ⊨ psi) -> rho ⊨ phi.
Definition entailment_Z phi :=
forall D (M : interp D) (rho : nat -> D), extensional M -> (forall sigma psi, Z psi -> sigma ⊨ psi) -> rho ⊨ phi.
Definition entailment_ZF phi :=
forall D (M : interp D) (rho : nat -> D), extensional M -> (forall sigma psi, ZF psi -> sigma ⊨ psi) -> rho ⊨ phi.
Definition deduction_HF phi :=
HFeq ⊢I phi.
Definition deduction_HFN phi :=
HFNeq ⊢I phi.
Definition deduction_ZF' phi :=
ZFeq' ⊢I phi.
Definition deduction_Z phi :=
Zeq ⊢TI phi.
Definition deduction_ZF phi :=
ZFeq ⊢TI phi.
Definition entailment_minZFeq' phi :=
forall D (M : interp D) (rho : nat -> D), (forall sigma psi, In psi minZFeq' -> sigma ⊨ psi) -> rho ⊨ phi.
Definition entailment_minZF' phi :=
forall D (M : @interp sig_empty _ D) (rho : nat -> D), extensional M -> (forall sigma psi, In psi minZF' -> sigma ⊨ psi) -> rho ⊨ phi.
Definition entailment_minZ phi :=
forall D (M : @interp sig_empty _ D) (rho : nat -> D), extensional M -> (forall sigma psi, minZ psi -> sigma ⊨ psi) -> rho ⊨ phi.
Definition entailment_minZF phi :=
forall D (M : @interp sig_empty _ D) (rho : nat -> D), extensional M -> (forall sigma psi, minZF psi -> sigma ⊨ psi) -> rho ⊨ phi.
Definition deduction_minZF' phi :=
minZFeq' ⊢I phi.
Definition deduction_minZ phi :=
minZeq ⊢TI phi.
Definition deduction_minZF phi :=
minZFeq ⊢TI phi.
Definition entailment_binZF phi :=
forall D (M : @interp sig_empty _ D) (rho : nat -> D), (forall psi, In psi binZF -> rho ⊨ psi) -> rho ⊨ phi.
Definition deduction_binZF phi :=
binZF ⊢I phi.