From Undecidability.Shared.Libs.DLW
Require Import Vec.pos Vec.vec Code.sss.
Require Import Undecidability.MinskyMachines.MM.
Set Implicit Arguments.
Notation INCₐ := mm_inc.
Notation DECₐ := mm_dec.
Section Minsky_Machine.
Variable (n : nat).
Definition mm_state := (nat*vec nat n)%type.
Local Notation "e #> x" := (vec_pos e x).
Local Notation "e [ v / x ]" := (vec_change e x v).
Inductive mma_sss : mm_instr (pos n) -> mm_state -> mm_state -> Prop :=
| in_mma_sss_inc : forall i x v, INCₐ x // (i,v) -1> (1+i,v[(S (v#>x))/x])
| in_mma_sss_dec_0 : forall i x k v, v#>x = O -> DECₐ x k // (i,v) -1> (1+i,v)
| in_mma_sss_dec_1 : forall i x k v u, v#>x = S u -> DECₐ x k // (i,v) -1> (k,v[u/x])
where "i // s -1> t" := (mma_sss i s t).
End Minsky_Machine.
Require Import Vector.
Import VectorNotations.
Section MMA_problems.
Notation "P // s ~~> t" := (sss_output (@mma_sss _) P s t).
Notation "P // s ↓" := (sss_terminates (@mma_sss _) P s).
Definition MMA_PROBLEM n := (list (mm_instr (pos n)) * vec nat n)%type.
Definition MMA_HALTS_ON_ZERO {n} (P : MMA_PROBLEM n) := (1,fst P) // (1,snd P) ~~> (0,vec_zero).
Definition MMA_HALTING {n} (P : MMA_PROBLEM n) := (1,fst P) // (1,snd P) ↓.
Definition MMA2_PROBLEM := MMA_PROBLEM 2.
Definition MMA2_HALTS_ON_ZERO := @MMA_HALTS_ON_ZERO 2.
Definition MMA2_HALTING := @MMA_HALTING 2.
Definition MMA_computable {k} (R : Vector.t nat k -> nat -> Prop) :=
exists n : nat, exists P : list (mm_instr (Fin.t (1 + k + n))),
forall v : Vector.t nat k,
(forall m, R v m <->
exists c (v' : Vector.t nat (k + n)), (1, P) // (1, (0 :: v) ++ (Vector.const 0 n)) ~~> (c, m :: v')).
End MMA_problems.