From PCF2.Autosubst Require Import core core_axioms unscoped.
Import UnscopedNotations.
Lemma scons_eta_id {n : nat} : var_zero .: shift = id :> (nat -> nat).
Proof. fext. intros [|x]; reflexivity. Qed.
Lemma scons_eta {T} (f : nat -> T) :
f var_zero .: shift >> f = f.
Proof. fext. intros [|x]; reflexivity. Qed.
Lemma scons_comp (T: Type) U (s: T) (sigma: nat -> T) (tau: T -> U ) :
(s .: sigma) >> tau = scons (tau s) (sigma >> tau) .
Proof.
fext. intros [|x]; reflexivity.
Qed.
Ltac fsimpl_fext :=
unfold up_ren; repeat match goal with
| [|- context[id >> ?f]] => change (id >> f) with f
| [|- context[?f >> id]] => change (f >> id) with f
| [|- context [id ?s]] => change (id s) with s
| [|- context[(?f >> ?g) >> ?h]] =>
change ((?f >> ?g) >> ?h) with (f >> (g >> h))
| [|- context[(?s.:?sigma) var_zero]] => change ((s.:sigma)var_zero) with s
| [|- context[(?f >> ?g) >> ?h]] =>
change ((f >> g) >> h) with (f >> (g >> h))
| [|- context[?f >> (?x .: ?g)]] =>
change (f >> (x .: g)) with g
| [|- context[var_zero]] => change var_zero with 0
| [|- context[?x2 .: shift >> ?f]] =>
change x2 with (f 0); rewrite (@scons_eta _ _ f)
| [|- context[(?v .: ?g) 0]] =>
change ((v .: g) 0) with v
| [|- context[(?v .: ?g) (S ?n)]] =>
change ((v .: g) (S n)) with (g n)
| [|- context[?f 0 .: ?g]] =>
change g with (shift >> f); rewrite scons_eta
| _ => first [progress (rewrite ?scons_comp) | progress (rewrite ?scons_eta_id)]
end.
Ltac fsimplc_fext :=
unfold up_ren; repeat match goal with
| [H : context[id >> ?f] |- _] => change (id >> f) with f in H
| [H: context[?f >> id] |- _] => change (f >> id) with f in H
| [H: context [id ?s] |- _] => change (id s) with s in H
| [H: context[(?f >> ?g) >> ?h] |- _] =>
change ((?f >> ?g) >> ?h) with (f >> (g >> h)) in H
| [H : context[(?s.:?sigma) var_zero] |- _] => change ((s.:sigma)var_zero) with s in H
| [H: context[(?f >> ?g) >> ?h] |- _] =>
change ((f >> g) >> h) with (f >> (g >> h)) in H
| [H: context[?f >> (?x .: ?g)] |- _] =>
change (f >> (x .: g)) with g in H
| [H: context[var_zero] |- _] => change var_zero with 0 in H
| [H: context[?x2 .: shift >> ?f] |- _] =>
change x2 with (f 0) in H; rewrite (@scons_eta _ _ f) in H
| [H: context[(?v .: ?g) 0] |- _] =>
change ((v .: g) 0) with v in H
| [H: context[(?v .: ?g) (S ?n)] |- _] =>
change ((v .: g) (S n)) with (g n) in H
| [H: context[?f 0 .: ?g] |- _] =>
change g with (shift >> f); rewrite scons_eta in H
| _ => first [progress (rewrite ?scons_comp in *) | progress (rewrite ?scons_eta_id in *) ]
end.
Tactic Notation "fsimpl_fext" "in" "*" :=
fsimpl_fext; fsimplc_fext.
Import UnscopedNotations.
Lemma scons_eta_id {n : nat} : var_zero .: shift = id :> (nat -> nat).
Proof. fext. intros [|x]; reflexivity. Qed.
Lemma scons_eta {T} (f : nat -> T) :
f var_zero .: shift >> f = f.
Proof. fext. intros [|x]; reflexivity. Qed.
Lemma scons_comp (T: Type) U (s: T) (sigma: nat -> T) (tau: T -> U ) :
(s .: sigma) >> tau = scons (tau s) (sigma >> tau) .
Proof.
fext. intros [|x]; reflexivity.
Qed.
Ltac fsimpl_fext :=
unfold up_ren; repeat match goal with
| [|- context[id >> ?f]] => change (id >> f) with f
| [|- context[?f >> id]] => change (f >> id) with f
| [|- context [id ?s]] => change (id s) with s
| [|- context[(?f >> ?g) >> ?h]] =>
change ((?f >> ?g) >> ?h) with (f >> (g >> h))
| [|- context[(?s.:?sigma) var_zero]] => change ((s.:sigma)var_zero) with s
| [|- context[(?f >> ?g) >> ?h]] =>
change ((f >> g) >> h) with (f >> (g >> h))
| [|- context[?f >> (?x .: ?g)]] =>
change (f >> (x .: g)) with g
| [|- context[var_zero]] => change var_zero with 0
| [|- context[?x2 .: shift >> ?f]] =>
change x2 with (f 0); rewrite (@scons_eta _ _ f)
| [|- context[(?v .: ?g) 0]] =>
change ((v .: g) 0) with v
| [|- context[(?v .: ?g) (S ?n)]] =>
change ((v .: g) (S n)) with (g n)
| [|- context[?f 0 .: ?g]] =>
change g with (shift >> f); rewrite scons_eta
| _ => first [progress (rewrite ?scons_comp) | progress (rewrite ?scons_eta_id)]
end.
Ltac fsimplc_fext :=
unfold up_ren; repeat match goal with
| [H : context[id >> ?f] |- _] => change (id >> f) with f in H
| [H: context[?f >> id] |- _] => change (f >> id) with f in H
| [H: context [id ?s] |- _] => change (id s) with s in H
| [H: context[(?f >> ?g) >> ?h] |- _] =>
change ((?f >> ?g) >> ?h) with (f >> (g >> h)) in H
| [H : context[(?s.:?sigma) var_zero] |- _] => change ((s.:sigma)var_zero) with s in H
| [H: context[(?f >> ?g) >> ?h] |- _] =>
change ((f >> g) >> h) with (f >> (g >> h)) in H
| [H: context[?f >> (?x .: ?g)] |- _] =>
change (f >> (x .: g)) with g in H
| [H: context[var_zero] |- _] => change var_zero with 0 in H
| [H: context[?x2 .: shift >> ?f] |- _] =>
change x2 with (f 0) in H; rewrite (@scons_eta _ _ f) in H
| [H: context[(?v .: ?g) 0] |- _] =>
change ((v .: g) 0) with v in H
| [H: context[(?v .: ?g) (S ?n)] |- _] =>
change ((v .: g) (S n)) with (g n) in H
| [H: context[?f 0 .: ?g] |- _] =>
change g with (shift >> f); rewrite scons_eta in H
| _ => first [progress (rewrite ?scons_comp in *) | progress (rewrite ?scons_eta_id in *) ]
end.
Tactic Notation "fsimpl_fext" "in" "*" :=
fsimpl_fext; fsimplc_fext.