Library CFG.Binarize
Require Export Separation.
Fixpoint step G G' :=
match G' with
[] ⇒ []
| R A [] :: Gr ⇒ R A [] :: step G Gr
| R A [s0] :: Gr ⇒ R A [s0] :: step G Gr
| R A [s0 ; s1] :: Gr ⇒ R A [s0 ; s1] :: step G Gr
| R A (s0 :: ur) :: Gr ⇒
let (B, H) := pickFresh G
in R A [s0 ; Vs B] :: R B ur :: Gr
end.
Definition step' G := step G G.
Fixpoint count_bin G :=
match G with
[] ⇒ 0
| R A u :: Gr ⇒ if decision ((|u|) ≤ 2) then count_bin Gr else |u| + count_bin Gr
end.
Definition bin G := it step' (count_bin G) G.
Definition binary G := ∀ A u, R A u el G → (|u|) ≤ 2.
Fixpoint step G G' :=
match G' with
[] ⇒ []
| R A [] :: Gr ⇒ R A [] :: step G Gr
| R A [s0] :: Gr ⇒ R A [s0] :: step G Gr
| R A [s0 ; s1] :: Gr ⇒ R A [s0 ; s1] :: step G Gr
| R A (s0 :: ur) :: Gr ⇒
let (B, H) := pickFresh G
in R A [s0 ; Vs B] :: R B ur :: Gr
end.
Definition step' G := step G G.
Fixpoint count_bin G :=
match G with
[] ⇒ 0
| R A u :: Gr ⇒ if decision ((|u|) ≤ 2) then count_bin Gr else |u| + count_bin Gr
end.
Definition bin G := it step' (count_bin G) G.
Definition binary G := ∀ A u, R A u el G → (|u|) ≤ 2.
Lemma count_decr G G' :
step G' G ≠ G → count_bin G > count_bin (step G' G).
Proof.
intros H.
induction G as [| [A u] G IHG] ; simpl in × ; [tauto | ].
destruct u as [| s0 [| s1 [| s2 u]]] ; try now (simpl ; apply IHG ; intros H0 ; apply H ; f_equal).
simpl. decide (S (S (| u |)) ≤ 2) as [D | D] ; omega.
Qed.
Lemma fp_bin G :
FP step' (bin G).
Proof.
apply it_fp. intros n.
remember (it step' n G) as G'.
decide (step' G' = G') as [D | D].
- left. auto.
- right. simpl. rewrite <- HeqG'.
apply count_decr in D. unfold step'. omega.
Qed.
Lemma fp_binary G :
FP step' G → binary G.
Proof.
intros Ss A u Ru.
unfold FP, step' in Ss.
remember G as G'.
do 2 rewrite HeqG' in Ss at 2.
rewrite HeqG' in Ru. clear HeqG'.
induction G as [| [B v] Gr IHGr] ; simpl in × ; [tauto |].
destruct Ru as [Ru | Ru].
- inv Ru. destruct u as [| s0 [| s1 [| s2 u]]] ; simpl ; auto. inv Ss.
- destruct v as [| s0 [| s1 [| s2 v]]] ; try now (simpl in Ss ; inversion Ss ; apply IHGr ; auto).
Qed.
Lemma bin_binary G :
binary (bin G).
Proof.
apply fp_binary, fp_bin.
Qed.
Lemma step_or G G' :
step G' G = G ∨ ∃ A Gr B u s, G === R A (s :: u) :: Gr ∧ step G' G === R A [s ; Vs B] :: R B u :: Gr ∧ ¬ Vs B el symbs G'.
Proof.
induction G as [| [A u] G IHG].
- simpl. now left.
- destruct u as [| s0 [| s1 [| s2 u]]] ; unfold step.
+ destruct IHG as [H | [A' [Gr [B' [u' [s [H0 [H1 H2]]]]]]]] ; try now (left ; f_equal).
right. ∃ A', (R A [] :: Gr), B', u', s. repeat split ; try rewrite H0 ; auto using Base.equi_swap ; rewrite H1 ; auto 7 using Base.equi_swap.
+ simpl ; destruct IHG as [H | [A' [Gr [B' [u' [s [H0 [H1 H2]]]]]]]] ; try now (left ; f_equal).
right. ∃ A', (R A [s0] :: Gr), B', u', s. repeat split ; try rewrite H0 ; auto using Base.equi_swap ; rewrite H1 ; auto 7 using Base.equi_swap.
+ simpl ; destruct IHG as [H | [A' [Gr [B' [u' [s [H0 [H1 H2]]]]]]]] ; try now (left ; f_equal).
right. ∃ A', (R A [s0 ; s1] :: Gr), B', u', s. repeat split ; try rewrite H0 ; auto using Base.equi_swap ; rewrite H1 ; auto 7 using Base.equi_swap.
+ destruct (pickFresh G') as [B N].
right. ∃ A, G, B, (s1 :: s2 :: u), s0. repeat split ; auto.
intros H. specialize (N (Vs B) H). unfold sless' in N. omega.
Qed.
Lemma step_der_equiv G A u :
terminal u → (Vs A) el dom G → (der G A u ↔ der (step G G) A u).
Proof.
intros T Do.
destruct (step_or G G) as [Ss | Ss].
- rewrite <- Ss at 1. split ; auto.
- destruct Ss as [A' [Gr [B [v [s [H0 [H1 H2]]]]]]].
assert (RL : substG (R A' [s; Vs B] :: Gr) (Vs B) v = R A' (s :: v) :: Gr). {
simpl. decide (s = Vs B).
+ exfalso. rewrite e in H0.
apply H2. apply symbs_inv. ∃ A', (Vs B :: v). rewrite H0. split ; auto.
+ decide (Vs B = Vs B) ; try tauto. rewrite app_nil_r. f_equal.
apply substG_skip. intros H. apply H2.
apply symbs_subset with (G := Gr) ; auto. rewrite H0. auto. }
rewrite der_equiv_G with (G1 := step G G) (G2 := R B v :: R A' [s; Vs B] :: Gr) by (rewrite Base.equi_swap ; auto).
rewrite der_equiv_G with (G2 := R A' (s :: v) :: Gr) ; auto.
rewrite <- RL. symmetry. apply der_substG_G_equiv.
+ intros H. apply symbs_dom in Do. inv H. tauto.
+ simpl. intros [H | H].
{ inv H. apply H2. apply symbs_inv. ∃ B, (s :: v). rewrite H0. split ; auto. }
{ apply symbs_dom in H. apply H2.
apply symbs_subset with (G := Gr) ; auto. rewrite H0. auto. }
+ intros H. apply H2. apply symbs_inv. ∃ A', (s :: v). rewrite H0. split ; auto.
+ intros H. destruct (T (Vs B) H) as [t T']. inv T'.
Qed.
Lemma step_dom G G' :
dom G <<= dom (step G' G).
Proof.
revert G'.
induction G as [| [A u] G IHG] ; intros G' ; try destruct u as [| s0 [| s1 [| s2 u]]] ; simpl ; auto.
Qed.
Lemma bin_der_equiv G A u :
terminal u → (Vs A) el dom G → (der G A u ↔ der (bin G) A u).
Proof.
unfold bin. remember (count_bin G) as n. clear Heqn.
intros T. revert G.
induction n as [| n IHn] ; intros G Do ; simpl.
- split ; auto.
- rewrite (IHn G Do).
apply step_der_equiv ; auto.
apply it_ind ; auto.
intros r H0. now apply step_dom.
Qed.
Lemma bin_language G A u :
Vs A el dom G → (language G A u ↔ language (bin G) A u).
Proof.
intros D.
split ; intros [L0 L1] ; split ; auto ; [rewrite <- bin_der_equiv | rewrite bin_der_equiv] ; auto.
Qed.