Lvc.Constr.MapLookup
Require Export Setoid Coq.Classes.Morphisms.
Require Export CSet Containers.SetDecide.
Require Import EqDec Computable Util AutoIndTac.
Require Export MapBasics.
Set Implicit Arguments.
Definition lookup_set X `{OrderedType X} Y `{OrderedType Y} (m:X → Y) (s:set X) : set Y :=
SetConstructs.map m s.
Lemma lookup_set_spec X `{OrderedType X} Y `{OrderedType Y} (m:X → Y) s y `{Proper _ (_eq ==> _eq) m}
: y ∈ lookup_set m s ↔ ∃ x, x ∈ s ∧ y === m x.
Proof.
intros. unfold lookup_set. eapply SetConstructs.map_spec; eauto.
Qed.
Ltac rewrite_lookup_set dummy := match goal with
| [ H : context [ In _ (lookup_set ?f ?s) ] |- _ ] ⇒
rewrite (@lookup_set_spec _ _ _ _ f s) in H
| [ |- context [ In _ (lookup_set ?f ?s) ]] ⇒
rewrite (@lookup_set_spec _ _ _ _ f s)
end.
Ltac lset_tac := set_tac rewrite_lookup_set.
Lemma lookup_set_helper X `{OrderedType X} Y `{OrderedType Y} (m:X → Y) s x `{Proper _ (_eq ==> _eq) m}
: x ∈ s → m x ∈ lookup_set m s.
Proof.
intros. eapply SetConstructs.map_spec; eauto.
Qed.
Lemma lookup_set_incl X `{OrderedType X} Y `{OrderedType Y} s t (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: s ⊆ t → (lookup_set m s) ⊆ (lookup_set m t).
Proof.
intros P I; hnf. intros Q.
eapply lookup_set_spec in Q; [|now eauto].
dcr. eapply lookup_set_spec; eauto.
Qed.
Lemma lookup_set_union X `{OrderedType X} Y `{OrderedType Y} s t (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: (lookup_set m (s ∪ t)) [=] (lookup_set m s ∪ lookup_set m t).
Proof.
intro. split; intros; lset_tac.
Qed.
Lemma lookup_set_minus_incl X `{OrderedType X} Y `{OrderedType Y}
(s t:set X) (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: lookup_set m s \ (lookup_set m t) ⊆ lookup_set m (s \ t).
Proof.
lset_tac.
Qed.
Lemma lookup_set_minus_single_incl X `{OrderedType X} Y `{OrderedType Y}
(s:set X) x (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: lookup_set m s \ singleton (m x) ⊆ lookup_set m (s \ singleton x).
Proof.
intros; hnf; intros.
eapply lookup_set_minus_incl; eauto.
Qed.
Arguments lookup_set {X} {H} {Y} {H0} m s.
Lemma lookup_set_on_id {X} `{OrderedType X} (s t : set X)
: s ⊆ t → (lookup_set (fun x ⇒ x) s) ⊆ t.
Proof.
intros. rewrite <- H0.
lset_tac.
Qed.
Instance lookup_set_morphism {X} `{OrderedType X} {Y} `{OrderedType Y} {f:X→Y}
`{Proper _ (_eq ==> _eq) f}
: Proper (Subset ==> Subset) (lookup_set f).
Proof.
unfold Proper, respectful, Subset; intros.
lset_tac.
Qed.
Instance lookup_set_morphism_flip {X} `{OrderedType X} {Y} `{OrderedType Y} {f:X→Y}
`{Proper _ (_eq ==> _eq) f}
: Proper (flip Subset ==> flip Subset) (lookup_set f).
Proof.
unfold Proper, respectful, flip, Subset; intros.
lset_tac.
Qed.
Instance lookup_set_morphism_eq {X} `{OrderedType X} {Y} `{OrderedType Y} {f:X→Y}
`{Proper _ (_eq ==> _eq) f}
: Proper (Equal ==> Equal) (lookup_set f).
Proof.
unfold Proper, respectful, Subset; intros ? ? A.
eapply double_inclusion in A; dcr. lset_tac.
Qed.
Lemma lookup_set_singleton {X} `{OrderedType X} {Y} `{OrderedType Y} (f:X→Y)
`{Proper _ (_eq ==> _eq) f} x
: lookup_set f {{x}} [=] {{f x}}.
Proof.
cset_tac.
Qed.
Lemma lookup_set_singleton' {X} `{OrderedType X} {Y} `{OrderedType Y} (f:X→Y)
`{Proper _ (_eq ==> _eq) f} x
: lookup_set f (singleton x) [=] singleton (f x).
Proof.
lset_tac.
- rewrite H4; eauto.
Qed.
Lemma lookup_set_single X `{OrderedType X} Y `{OrderedType Y} (ϱ:X→Y)
`{Proper _ (_eq ==> _eq) ϱ} D D' v
: v ∈ D
→ lookup_set ϱ D ⊆ D'
→ {{ ϱ v }} ⊆ D'.
Proof.
intros. rewrite <- H3. lset_tac.
Qed.
Lemma lookup_set_add X `{OrderedType X} Y `{OrderedType Y} x s (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: (lookup_set m {x; s}) [=] {m x; lookup_set m s}.
Proof.
intro. lset_tac.
Qed.
Lemma lookup_set_empty X `{OrderedType X} Y `{OrderedType Y} (ϱ:X→Y)
`{Proper _ (_eq ==> _eq) ϱ}
: lookup_set ϱ {} [=] {}.
Proof.
unfold lookup_set. cset_tac.
Qed.
Hint Extern 20 (lookup_set ?ϱ {} [=] {}) ⇒ eapply lookup_set_empty; eauto.
Hint Extern 20 ({} [=] lookup_set ?ϱ {}) ⇒ symmetry; eapply lookup_set_empty; eauto.
Hint Extern 20 (lookup_set ?ϱ (singleton ?v) [=] singleton (?ϱ ?v)) ⇒ eapply lookup_set_singleton'; eauto.
Hint Extern 20 (singleton (?ϱ ?v) [=] lookup_set ?ϱ (singleton ?v)) ⇒ symmetry; eapply lookup_set_singleton'; eauto.
Lemma lookup_set_single_fact X `{OrderedType X} (x:X) ϱ `{Proper _ (_eq ==> _eq) ϱ}
: singleton (ϱ x) ⊆ lookup_set ϱ {x}.
Proof.
cset_tac.
Qed.
Lemma lookup_set_union_incl X `{OrderedType X} s t u ϱ `{Proper _ (_eq ==> _eq) ϱ}
: u ⊆ lookup_set ϱ s ∪ lookup_set ϱ t
→ u ⊆ lookup_set ϱ (s ∪ t).
Proof.
rewrite lookup_set_union; eauto.
Qed.
Hint Immediate lookup_set_union_incl : cset.
Hint Resolve lookup_set_single_fact : cset.
Lemma map_incl X `{OrderedType X} Y `{OrderedType Y} D D' (f:X→Y)
`{Proper _ (_eq ==> _eq) f}
: D ⊆ D'
→ map f D ⊆ map f D'.
Proof.
intros; hnf; intros. cset_tac.
Qed.
Hint Resolve map_incl : cset.
Lemma map_incl_incl X `{OrderedType X} Y `{OrderedType Y} (f:X→Y)
`{Proper _ (_eq ==> _eq) f} (s t:set X) (u: set Y)
: map f s ⊆ u
→ t ⊆ s
→ map f t ⊆ u.
Proof.
intros. rewrite map_incl; eauto.
Qed.
Hint Resolve map_incl_incl : cset.
Require Export CSet Containers.SetDecide.
Require Import EqDec Computable Util AutoIndTac.
Require Export MapBasics.
Set Implicit Arguments.
Definition lookup_set X `{OrderedType X} Y `{OrderedType Y} (m:X → Y) (s:set X) : set Y :=
SetConstructs.map m s.
Lemma lookup_set_spec X `{OrderedType X} Y `{OrderedType Y} (m:X → Y) s y `{Proper _ (_eq ==> _eq) m}
: y ∈ lookup_set m s ↔ ∃ x, x ∈ s ∧ y === m x.
Proof.
intros. unfold lookup_set. eapply SetConstructs.map_spec; eauto.
Qed.
Ltac rewrite_lookup_set dummy := match goal with
| [ H : context [ In _ (lookup_set ?f ?s) ] |- _ ] ⇒
rewrite (@lookup_set_spec _ _ _ _ f s) in H
| [ |- context [ In _ (lookup_set ?f ?s) ]] ⇒
rewrite (@lookup_set_spec _ _ _ _ f s)
end.
Ltac lset_tac := set_tac rewrite_lookup_set.
Lemma lookup_set_helper X `{OrderedType X} Y `{OrderedType Y} (m:X → Y) s x `{Proper _ (_eq ==> _eq) m}
: x ∈ s → m x ∈ lookup_set m s.
Proof.
intros. eapply SetConstructs.map_spec; eauto.
Qed.
Lemma lookup_set_incl X `{OrderedType X} Y `{OrderedType Y} s t (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: s ⊆ t → (lookup_set m s) ⊆ (lookup_set m t).
Proof.
intros P I; hnf. intros Q.
eapply lookup_set_spec in Q; [|now eauto].
dcr. eapply lookup_set_spec; eauto.
Qed.
Lemma lookup_set_union X `{OrderedType X} Y `{OrderedType Y} s t (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: (lookup_set m (s ∪ t)) [=] (lookup_set m s ∪ lookup_set m t).
Proof.
intro. split; intros; lset_tac.
Qed.
Lemma lookup_set_minus_incl X `{OrderedType X} Y `{OrderedType Y}
(s t:set X) (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: lookup_set m s \ (lookup_set m t) ⊆ lookup_set m (s \ t).
Proof.
lset_tac.
Qed.
Lemma lookup_set_minus_single_incl X `{OrderedType X} Y `{OrderedType Y}
(s:set X) x (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: lookup_set m s \ singleton (m x) ⊆ lookup_set m (s \ singleton x).
Proof.
intros; hnf; intros.
eapply lookup_set_minus_incl; eauto.
Qed.
Arguments lookup_set {X} {H} {Y} {H0} m s.
Lemma lookup_set_on_id {X} `{OrderedType X} (s t : set X)
: s ⊆ t → (lookup_set (fun x ⇒ x) s) ⊆ t.
Proof.
intros. rewrite <- H0.
lset_tac.
Qed.
Instance lookup_set_morphism {X} `{OrderedType X} {Y} `{OrderedType Y} {f:X→Y}
`{Proper _ (_eq ==> _eq) f}
: Proper (Subset ==> Subset) (lookup_set f).
Proof.
unfold Proper, respectful, Subset; intros.
lset_tac.
Qed.
Instance lookup_set_morphism_flip {X} `{OrderedType X} {Y} `{OrderedType Y} {f:X→Y}
`{Proper _ (_eq ==> _eq) f}
: Proper (flip Subset ==> flip Subset) (lookup_set f).
Proof.
unfold Proper, respectful, flip, Subset; intros.
lset_tac.
Qed.
Instance lookup_set_morphism_eq {X} `{OrderedType X} {Y} `{OrderedType Y} {f:X→Y}
`{Proper _ (_eq ==> _eq) f}
: Proper (Equal ==> Equal) (lookup_set f).
Proof.
unfold Proper, respectful, Subset; intros ? ? A.
eapply double_inclusion in A; dcr. lset_tac.
Qed.
Lemma lookup_set_singleton {X} `{OrderedType X} {Y} `{OrderedType Y} (f:X→Y)
`{Proper _ (_eq ==> _eq) f} x
: lookup_set f {{x}} [=] {{f x}}.
Proof.
cset_tac.
Qed.
Lemma lookup_set_singleton' {X} `{OrderedType X} {Y} `{OrderedType Y} (f:X→Y)
`{Proper _ (_eq ==> _eq) f} x
: lookup_set f (singleton x) [=] singleton (f x).
Proof.
lset_tac.
- rewrite H4; eauto.
Qed.
Lemma lookup_set_single X `{OrderedType X} Y `{OrderedType Y} (ϱ:X→Y)
`{Proper _ (_eq ==> _eq) ϱ} D D' v
: v ∈ D
→ lookup_set ϱ D ⊆ D'
→ {{ ϱ v }} ⊆ D'.
Proof.
intros. rewrite <- H3. lset_tac.
Qed.
Lemma lookup_set_add X `{OrderedType X} Y `{OrderedType Y} x s (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: (lookup_set m {x; s}) [=] {m x; lookup_set m s}.
Proof.
intro. lset_tac.
Qed.
Lemma lookup_set_empty X `{OrderedType X} Y `{OrderedType Y} (ϱ:X→Y)
`{Proper _ (_eq ==> _eq) ϱ}
: lookup_set ϱ {} [=] {}.
Proof.
unfold lookup_set. cset_tac.
Qed.
Hint Extern 20 (lookup_set ?ϱ {} [=] {}) ⇒ eapply lookup_set_empty; eauto.
Hint Extern 20 ({} [=] lookup_set ?ϱ {}) ⇒ symmetry; eapply lookup_set_empty; eauto.
Hint Extern 20 (lookup_set ?ϱ (singleton ?v) [=] singleton (?ϱ ?v)) ⇒ eapply lookup_set_singleton'; eauto.
Hint Extern 20 (singleton (?ϱ ?v) [=] lookup_set ?ϱ (singleton ?v)) ⇒ symmetry; eapply lookup_set_singleton'; eauto.
Lemma lookup_set_single_fact X `{OrderedType X} (x:X) ϱ `{Proper _ (_eq ==> _eq) ϱ}
: singleton (ϱ x) ⊆ lookup_set ϱ {x}.
Proof.
cset_tac.
Qed.
Lemma lookup_set_union_incl X `{OrderedType X} s t u ϱ `{Proper _ (_eq ==> _eq) ϱ}
: u ⊆ lookup_set ϱ s ∪ lookup_set ϱ t
→ u ⊆ lookup_set ϱ (s ∪ t).
Proof.
rewrite lookup_set_union; eauto.
Qed.
Hint Immediate lookup_set_union_incl : cset.
Hint Resolve lookup_set_single_fact : cset.
Lemma map_incl X `{OrderedType X} Y `{OrderedType Y} D D' (f:X→Y)
`{Proper _ (_eq ==> _eq) f}
: D ⊆ D'
→ map f D ⊆ map f D'.
Proof.
intros; hnf; intros. cset_tac.
Qed.
Hint Resolve map_incl : cset.
Lemma map_incl_incl X `{OrderedType X} Y `{OrderedType Y} (f:X→Y)
`{Proper _ (_eq ==> _eq) f} (s t:set X) (u: set Y)
: map f s ⊆ u
→ t ⊆ s
→ map f t ⊆ u.
Proof.
intros. rewrite map_incl; eauto.
Qed.
Hint Resolve map_incl_incl : cset.