Lvc.Equiv.SimTactics
Require NonParametricBiSim.
Require Import Sim SimLockStep IL paco3 OptionR.
Require Export ILStateType.
Require Import Sim SimLockStep IL paco3 OptionR.
Require Export ILStateType.
Ltac pone_step := pfold;
first [
eapply SimSilent; [ eapply plus2O; single_step
| eapply plus2O; single_step
| ]
| eapply SimLockSilent; [ single_step
| single_step
| ]
].
Ltac pone_step_left :=
eapply sim_expansion_closed; [ | eapply star2_silent; single_step | eapply star2_refl ].
Ltac pone_step_right :=
eapply sim_expansion_closed; [ | eapply star2_refl | eapply star2_silent; single_step ].
Ltac pno_step :=
pfold; first [eapply SimTerm;
[ | eapply star2_refl | eapply star2_refl | | ];
[ repeat get_functional; try reflexivity
| repeat get_functional; stuck2
| repeat get_functional; stuck2 ]
|eapply SimLockTerm; swap 1 3;
[ repeat get_functional; stuck2
| repeat get_functional; stuck2
| repeat get_functional; try reflexivity ]
] .
Ltac step_activated :=
match goal with
| [ H : omap (op_eval ?E) ?Y = Some ?vl
|- activated (_, ?E, stmtLet ?x (Call ?f ?Y) ?s) ] ⇒
eexists (ExternI f vl default_val); eexists; try (now (econstructor; eauto))
end.
Ltac pextern_step :=
let STEP := fresh "STEP" in
pfold;
first [ eapply SimExtern ;
[ eapply star2_refl
| eapply star2_refl
| try step_activated
| try step_activated
| intros ? ? STEP; inv STEP; eexists; split; [econstructor; eauto | ]
| intros ? ? STEP; inv STEP; eexists; split; [econstructor; eauto | ]
]
| eapply SimLockExtern ;
[ try step_activated
| try step_activated
| intros ? ? STEP; inv STEP; eexists; split; [econstructor; eauto | ]
| intros ? ? STEP; inv STEP; eexists; split; [econstructor; eauto | ]
]
].
Ltac pno_step_left :=
pfold; econstructor 3; [ | eapply star2_refl|]; [ reflexivity | ]; stuck2.
Ltac perr :=
pfold; eapply SimErr;
[ | eapply star2_refl | ];
[ repeat get_functional; try reflexivity
| repeat get_functional; stuck2 ].
Set Implicit Arguments.
Lemma sim_let_op X (IST:ILStateType X) i r (L L':X) V V' x x' e e' s s'
(EQ:op_eval V e = op_eval V' e')
(SIM: ∀ v, op_eval V e = Some v
→ (sim r \3/ r) i (L, V [x <- ⎣ v ⎦], s) (L', V' [x' <- ⎣ v ⎦], s'))
: sim r i (L, V, stmtLet x (Operation e) s) (L', V', stmtLet x' (Operation e') s').
Proof.
case_eq (op_eval V e); intros.
× pfold; eapply SimSilent; [ eapply plus2O
| eapply plus2O
| ].
eapply step_let_op; eauto. eauto.
eapply step_let_op. rewrite <- EQ. eauto. eauto.
eapply SIM; eauto.
× pfold. eapply SimTerm; [| eapply star2_refl | eapply star2_refl | | ];
[ simpl | | ].
rewrite !result_none; isabsurd; eauto.
eapply let_op_normal; eauto.
eapply let_op_normal; rewrite <- EQ; eauto.
Qed.
Lemma sim_let_call X (IST:ILStateType X) i r (L L':X) V V' x x' f Y Y' s s'
(EQ: omap (op_eval V) Y = omap (op_eval V') Y')
(SIM: ∀ v, (sim r \3/ r) i (L, V [x <- ⎣ v ⎦], s) (L', V' [x' <- ⎣ v ⎦], s'))
: sim r i (L, V, stmtLet x (Call f Y) s) (L', V', stmtLet x' (Call f Y') s').
Proof.
case_eq (omap (op_eval V) Y); intros.
× pose proof H as H'. rewrite EQ in H'.
pfold; eapply SimExtern;
[ eapply star2_refl
| eapply star2_refl
| step_activated; eauto using step_let_call
| step_activated; eauto using step_let_call | |];
intros ? ? STEP; eapply let_call_inversion in STEP; dcr; subst; eexists; split; try eapply step_let_call; eauto.
rewrite <- EQ; eauto.
rewrite EQ; eauto.
× pfold. eapply SimTerm; [| eapply star2_refl | eapply star2_refl | | ];
[ simpl | | ].
rewrite !result_none; isabsurd; eauto.
eapply let_call_normal; eauto.
eapply let_call_normal; rewrite <- EQ; eauto.
Qed.
Lemma sim_cond X (IST:ILStateType X) i r (L L':X) V V' e e' s1 s1' s2 s2'
(EQ: op_eval V e = op_eval V' e')
(SIM1: ∀ v, op_eval V e = Some v → val2bool v = true →
(sim r \3/ r) i (L, V, s1) (L', V', s1'))
(SIM2: ∀ v, op_eval V e = Some v → val2bool v = false →
(sim r \3/ r) i (L, V, s2) (L', V', s2'))
: sim r i (L, V, stmtIf e s1 s2) (L', V', stmtIf e' s1' s2').
Proof.
case_eq (op_eval V e); intros.
- case_eq (val2bool v); intros.
+ pfold; eapply SimSilent; [ eapply plus2O; [|eapply filter_tau_nil_eq]
| eapply plus2O; [|eapply filter_tau_nil_eq]
| eapply SIM1; eauto];
eapply step_cond_true; eauto. rewrite <- EQ; eauto.
+ pfold; eapply SimSilent; [ eapply plus2O; [|eapply filter_tau_nil_eq]
| eapply plus2O; [|eapply filter_tau_nil_eq]
| eapply SIM2; eauto];
eapply step_cond_false; eauto. rewrite <- EQ; eauto.
- pfold. eapply SimTerm; [| eapply star2_refl | eapply star2_refl | | ];
[ simpl | | ].
rewrite !result_none; isabsurd; eauto.
eapply cond_normal; eauto.
eapply cond_normal; eauto. rewrite <- EQ; eauto.
Qed.
Lemma sim_cond_left_true X (IST:ILStateType X) i r (L L':X) V V' e s1 s2 s1' v
(EQ: op_eval V e = Some v) (vt:val2bool v = true)
(SIM1: sim r i (L, V, s1) (L', V', s1'))
: sim r i (L, V, stmtIf e s1 s2) (L', V', s1').
Proof.
eapply sim_expansion_closed; [ eapply SIM1
| eapply star2_silent; [| eapply star2_refl]
| eapply star2_refl].
eapply step_cond_true; eauto.
Qed.
Lemma sim_cond_left_false X (IST:ILStateType X) i r (L L':X) V V' e s1 s2 s2' v
(EQ: op_eval V e = Some v) (vt:val2bool v = false)
(SIM1: sim r i (L, V, s2) (L', V', s2'))
: sim r i (L, V, stmtIf e s1 s2) (L', V', s2').
Proof.
eapply sim_expansion_closed; [ eapply SIM1
| eapply star2_silent; [| eapply star2_refl]
| eapply star2_refl].
eapply step_cond_false; eauto.
Qed.
Lemma sim_if_elim X (IST:ILStateType X) i r (L L':X) V V' e s1 s1' s2 s2'
(EQ: op2bool e = None → op_eval V e = op_eval V' e)
(SIM1: ∀ v, op_eval V e = Some v → val2bool v = true → op2bool e ≠ Some false →
(sim r) i (L, V, s1) (L', V', s1'))
(SIM2: ∀ v, op_eval V e = Some v → val2bool v = false → op2bool e ≠ Some true →
(sim r) i (L, V, s2) (L', V', s2'))
: sim r i (L, V, stmtIf e s1 s2)
(L', V',
if [op2bool e = ⎣ true ⎦] then s1' else if [
op2bool e = ⎣ false ⎦] then s2' else
stmtIf e s1' s2').
Proof.
repeat cases.
+ edestruct (op2bool_val2bool V); eauto; dcr.
eapply sim_expansion_closed; [ eapply SIM1; eauto
| eapply star2_silent; [| eapply star2_refl]
| eapply star2_refl].
eapply step_cond_true; eauto.
+ edestruct (op2bool_val2bool V); eauto; dcr.
eapply sim_expansion_closed; [ eapply SIM2; eauto
| eapply star2_silent; [| eapply star2_refl]
| eapply star2_refl].
eapply step_cond_false; eauto.
+ eapply (sim_cond IST); intros; try left; eauto.
Qed.
Lemma sim_let_op_apx X (IST:ILStateType X) r (L L':X) V V' x x' e e' s s'
(EQ: fstNoneOrR eq (op_eval V e) (op_eval V' e'))
(SIM: ∀ v, op_eval V e = Some v
→ (sim r \3/ r) Sim (L, V [x <- ⎣ v ⎦], s) (L', V' [x' <- ⎣ v ⎦], s'))
: sim r Sim (L, V, stmtLet x (Operation e) s) (L', V', stmtLet x' (Operation e') s').
Proof.
inv EQ.
- pfold ; eapply SimErr;
[ | eapply star2_refl | ].
+ apply result_none. inversion 1.
+ eapply let_op_normal. eauto.
- pfold; eapply SimSilent; [ eapply plus2O
| eapply plus2O
| ].
eapply step_let_op; eauto. eauto.
eapply step_let_op. eauto. eauto.
eapply SIM; eauto.
Qed.
Lemma sim_cond_op_apx X (IST:ILStateType X) r (L L':X) V V' e e' s1 s1' s2 s2'
(EQ: fstNoneOrR eq (op_eval V e) (op_eval V' e'))
(SIM1: ∀ v, op_eval V e = Some v → val2bool v = true →
(sim r \3/ r) Sim (L, V, s1) (L', V', s1'))
(SIM2: ∀ v, op_eval V e = Some v → val2bool v = false →
(sim r \3/ r) Sim (L, V, s2) (L', V', s2'))
: sim r Sim (L, V, stmtIf e s1 s2) (L', V', stmtIf e' s1' s2').
Proof.
inv EQ.
- pfold; eapply SimErr;
[|eapply star2_refl|].
+ apply result_none. inversion 1.
+ eapply cond_normal. eauto.
- case_eq (val2bool y); intros.
+ pfold; eapply SimSilent; [ eapply plus2O; [|eapply filter_tau_nil_eq]
| eapply plus2O; [|eapply filter_tau_nil_eq]
| eapply SIM1; eauto];
eapply step_cond_true; eauto.
+ pfold; eapply SimSilent; [ eapply plus2O; [|eapply filter_tau_nil_eq]
| eapply plus2O; [|eapply filter_tau_nil_eq]
| eapply SIM2; eauto];
eapply step_cond_false; eauto.
Qed.
Lemma sim_return_apx X (IST:ILStateType X) r (L L':X) V V' e e'
:fstNoneOrR eq (op_eval V e) (op_eval V' e') → sim r Sim (L, V, stmtReturn e) (L', V', stmtReturn e').
Proof.
intros. inv H.
- pfold; eapply SimErr; [|eapply star2_refl|].
+ rewrite result_return. eauto.
+ apply return_normal.
- pfold; eapply SimTerm; [|eapply star2_refl|eapply star2_refl| | ].
+ rewrite! result_return. congruence.
+ apply return_normal.
+ apply return_normal.
Qed.
Lemma sim_let_call_apx X (IST:ILStateType X) r (L L':X) V V' x x' f Y Y' s s'
(EQ: fstNoneOrR eq (omap (op_eval V) Y) (omap (op_eval V') Y'))
(SIM: ∀ v, (sim r \3/ r) Sim (L, V [x <- ⎣ v ⎦], s) (L', V' [x' <- ⎣ v ⎦], s'))
: sim r Sim (L, V, stmtLet x (Call f Y) s) (L', V', stmtLet x' (Call f Y') s').
Proof.
inv EQ.
- pfold. eapply SimErr; [|eapply star2_refl | ]; [ simpl | ].
+ rewrite !result_none; isabsurd; eauto.
+ eapply let_call_normal; eauto.
- symmetry in H0, H.
pfold; eapply SimExtern;
[ eapply star2_refl
| eapply star2_refl
| step_activated; eauto using step_let_call
| step_activated; eauto using step_let_call | |];
intros ? ? STEP; eapply let_call_inversion in STEP; dcr; subst; eexists; split; try eapply step_let_call; eauto; congruence.
Qed.