Lvc.Infra.AllInRel
Require Import Coq.Arith.Lt Coq.Arith.Plus Coq.Classes.RelationClasses List.
Require Import Util LengthEq Get Drop Take DecSolve.
Require Import Util LengthEq Get Drop Take DecSolve.
Set Implicit Arguments.
Section PIR2.
Variable X Y : Type.
Variable R : X → Y → Prop.
Inductive PIR2
: list X → list Y → Prop :=
| PIR2_nil : PIR2 nil nil
| PIR2_cons x XL y (pf:R x y)
(YL:list Y) :
PIR2 XL YL →
PIR2 (x::XL) (y::YL).
Lemma PIR2_nth (L:list X) (L':list Y) l blk :
PIR2 L L'
→ get L l blk
→ ∃ blk':Y,
get L' l blk' ∧ R blk blk'.
Proof.
intros. general induction H; isabsurd.
inv H0. eexists; eauto using get.
edestruct IHPIR2 as [blk' [A B]]; eauto.
eexists; repeat split; eauto using get.
Qed.
Lemma PIR2_nth_2 (L:list X) (L':list Y) l blk :
PIR2 L L'
→ get L' l blk
→ ∃ blk',
get L l blk' ∧ R blk' blk.
Proof.
intros. general induction H; isabsurd.
inv H0. eexists; eauto using get.
edestruct IHPIR2 as [blk' [A B]]; eauto.
eexists; repeat split; eauto using get.
Qed.
Lemma PIR2_drop LT L n
: PIR2 LT L → PIR2 (drop n LT) (drop n L).
Proof.
general induction n; simpl; eauto.
destruct L; inv H; simpl; auto.
Qed.
End PIR2.
Lemma PIR2_app X Y (R:X→Y→Prop) L1 L2 L1' L2'
: PIR2 R (L1) (L1')
→ PIR2 R (L2) (L2')
→ PIR2 R (L1 ++ L2) (L1' ++ L2').
Proof.
intros. general induction H; eauto using PIR2.
Qed.
Lemma PIR2_app' X Y (R:X→Y→Prop) L1 L2 L1' L2'
: PIR2 R (L1 ++ L2) (L1' ++ L2')
→ length L1 = length L1'
→ PIR2 R (L1) (L1') ∧ PIR2 R (L2) (L2').
Proof.
intros P LEN. length_equify.
general induction LEN; simpl in *; eauto using PIR2.
inv P. exploit IHLEN; eauto. eauto using PIR2.
Qed.
Lemma PIR2_get X Y (R:X→Y→Prop) L L'
: (∀ n x x', get L n x → get L' n x' → R x x')
→ length L = length L'
→ PIR2 R L L'.
Proof.
intros. eapply length_length_eq in H0.
general induction H0; eauto 20 using PIR2, get.
Qed.
Lemma get_PIR2 X Y (R:X→Y→Prop) L L'
: PIR2 R L L'
→ ∀ n x x', get L n x → get L' n x' → R x x'.
Proof.
intros Pir ? ? ? GetL. revert L' Pir x'.
induction GetL; intros L' Pir y GetL'; inv GetL'; inv Pir; eauto.
Qed.
Instance PIR2_refl X (R:X → X → Prop) `{Reflexive _ R} : Reflexive (PIR2 R).
Proof.
hnf; intros. general induction x; eauto using PIR2.
Qed.
Instance PIR2_sym {A} (R : A → A→ Prop) `{Symmetric _ R} :
Symmetric (PIR2 R).
Proof.
intros; hnf; intros. general induction H0.
- econstructor.
- econstructor; eauto.
Qed.
Instance PIR2_trans {X} (R:X → X → Prop) `{Transitive _ R}
: Transitive (PIR2 R).
Proof.
hnf; intros.
general induction H0; simpl in ×.
+ inv H1. econstructor.
+ inv H1.
- econstructor; eauto.
Qed.
Instance PIR2_equivalence {X} (R:X → X → Prop) `{Equivalence _ R}
: Equivalence (PIR2 R).
Proof.
econstructor; eauto with typeclass_instances.
Qed.
Lemma PIR2_length X Y (R:X→Y→Prop) L L'
: PIR2 R L L' → length L = length L'.
Proof.
intros. general induction H; simpl; eauto.
Qed.
Instance PIR2_computable X Y (R:X→Y→Prop) `{∀ x y, Computable (R x y)}
: ∀ (L:list X) (L':list Y), Computable (PIR2 R L L').
Proof.
intros. decide (length L = length L').
- general induction L; destruct L'; isabsurd; try dec_solve.
decide (R a y); try dec_solve.
edestruct IHL with (L':=L'); eauto; subst; try dec_solve.
- right; intro; subst. exploit PIR2_length; eauto.
Defined.
Lemma PIR2_flip {X} (R:X→X→Prop) l l'
: PIR2 R l l'
→ PIR2 (flip R) l' l.
Proof.
intros. general induction H.
- econstructor.
- econstructor; eauto.
Qed.
Lemma PIR2_take X Y (R: X → Y → Prop) L L' n
: PIR2 R L L'
→ PIR2 R (take n L) (take n L').
Proof.
intros REL.
general induction REL; destruct n; simpl; eauto using PIR2.
Qed.
Lemma PIR2_not_get X Y (R: X → Y → Prop) L L' n
: PIR2 R L L'
→ (∀ x, get L n x → False)
→ ∀ x, get L' n x → False.
Proof.
intros. edestruct PIR2_nth_2; dcr; eauto.
Qed.
Ltac PIR2_inv :=
match goal with
| [ H : PIR2 ?R ?A ?B, H' : get ?A ?n ?b |- _ ] ⇒
let X := fresh H in
destruct (PIR2_nth H H') as [? [? X]]; eauto; (try inv X);
repeat get_functional; (try subst) ;
let X'' := fresh H in pose proof (PIR2_drop n H) as X''
| [ H : PIR2 ?R ?A ?B, H' : get ?B ?n ?b |- _ ] ⇒
let X := fresh H in
destruct (PIR2_nth_2 H H') as [? [? X]]; eauto; (try inv X);
repeat get_functional; (try subst) ;
let X'' := fresh H in pose proof (PIR2_drop n H) as X''
| [ H : PIR2 ?R ?A ?B, H' : ∀ _, get ?A _ _ → False |- _ ] ⇒
pose proof (PIR2_not_get H H')
end.
Hint Extern 20 (PIR2 _ ?a ?a') ⇒ progress (first [has_evar a | has_evar a' | reflexivity]).
Lemma PIR2_eq X (A:list X) (B:list X)
: PIR2 eq A B
→ A = B.
Proof.
intros. general induction H; simpl; eauto.
Qed.
Lemma PIR2_R_eq X Y (R:X→Y→Prop) A B B'
: PIR2 eq B' B
→ PIR2 R A B'
→ PIR2 R A B.
Proof.
intros P1 P2; general induction P1; inv P2; econstructor; eauto.
Qed.
Lemma PIR2_R_impl X Y (R R':X → Y → Prop) (L:list X) (L':list Y)
: (∀ x y, R x y → R' x y) → PIR2 R L L' → PIR2 R' L L'.
Proof.
intros EQ P.
general induction P; eauto using @PIR2.
Qed.