Lvc.Constr.MapLookupList
Require Export Setoid Coq.Classes.Morphisms.
Require Import EqDec Computable Util LengthEq AutoIndTac.
Require Export CSet Containers.SetDecide.
Require Export MapBasics MapLookup MapUpdate.
Set Implicit Arguments.
Section MapLookupList.
Variable X : Type.
Context `{OrderedType X}.
Variable Y : Type.
Open Scope fmap_scope.
Fixpoint lookup_list (m:X → Y) (L:list X) : list Y :=
match L with
| nil ⇒ nil
| x::L ⇒ m x::lookup_list m L
end.
Lemma update_with_list_app (A A' : list X) (B B' : list Y) E
: length A = length B
→ update_with_list (A++A') (B++B') E = update_with_list A B (update_with_list A' B' E).
Proof.
intros. eapply length_length_eq in H0. general induction H0; simpl; eauto.
rewrite IHlength_eq; eauto.
Qed.
Lemma lookup_list_length (m:X → Y) (L:list X)
: length (lookup_list m L) = length L.
Proof.
induction L; simpl; eauto.
Qed.
Lemma lookup_list_agree (m m':X → Y) (L:list X)
: agree_on eq (of_list L) m m'
→ lookup_list m L = lookup_list m' L.
Proof.
general induction L; simpl in × |- *; eauto.
f_equal. eapply H0; cset_tac; eauto.
eapply IHL; eapply agree_on_incl; eauto. cset_tac; eauto.
Qed.
Lemma of_list_lookup_list `{OrderedType Y} (m:X → Y) L
: Proper (_eq ==> _eq) m
→ of_list (lookup_list m L) [=] lookup_set m (of_list L).
Proof.
general induction L; simpl.
+ intros x. cset_tac; firstorder. eapply lookup_set_spec in H2.
- dcr; cset_tac; firstorder.
- eauto.
+ rewrite IHL; eauto. intros x. split; intros.
- eapply lookup_set_spec; eauto. eapply add_iff in H2; destruct H2.
× eexists a; split; eauto. eapply add_1; eauto.
× eapply lookup_set_spec in H2; eauto. dcr. eexists x0; split; eauto.
eapply add_2; eauto.
- eapply lookup_set_spec in H2; eauto. dcr.
eapply add_iff in H4; destruct H4.
× eapply add_1. rewrite H5. eapply H1. eapply H2.
× eapply add_2. eapply lookup_set_spec; eauto.
Qed.
End MapLookupList.
Lemma lookup_id X (l:list X)
: lookup_list (@id X) l = l.
Proof.
general induction l; simpl; eauto.
f_equal; eauto.
Qed.
Global Instance update_with_list_inst X `{OrderedType X} Y `{OrderedType Y} :
Proper (eq ==> eq ==> (@feq X Y _eq ) ==> (@feq _ _ _eq)) (@update_with_list X _ Y).
Proof.
unfold respectful, Proper; intros. subst.
general induction y; simpl; eauto.
destruct y0; eauto. hnf; intros.
specialize (IHy H Y H0 y2 x1 y1 H3).
eapply update_inst; eauto.
Qed.
Global Instance lookup_list_inst X `{OrderedType X} Y:
Proper ((@feq X Y eq) ==> eq ==> eq) (@lookup_list X Y).
Proof.
unfold respectful, Proper, update, feq; intros; subst.
general induction y0; eauto.
simpl. f_equal; eauto.
Qed.
Lemma update_with_list_lookup_list X `{OrderedType X} Y `{OrderedType Y} (E:X → Y)
`{Proper _ (_eq ==> _eq) E} (Z : list X)
: @feq _ _ _eq (update_with_list Z (lookup_list E Z) E) E.
Proof.
general induction Z; simpl.
+ reflexivity.
+ setoid_rewrite IHZ; eauto. rewrite update_id; eauto. reflexivity.
Qed.
Lemma lookup_list_app X Y (A A':list X) (E:X → Y)
: lookup_list E (A ++ A') = List.app (lookup_list E A) (lookup_list E A').
Proof.
general induction A; simpl; eauto.
rewrite IHA; eauto.
Qed.
Lemma lookup_list_unique X `{OrderedType X} Y (Z:list X) (Z':list Y) f
: length Z = length Z'
→ unique Z
→ lookup_list (f [Z <-- Z']) Z = Z'.
Proof.
intros. length_equify. general induction H0; simpl in *; dcr; eauto.
- f_equal.
+ lud; intuition.
+ erewrite lookup_list_agree; eauto.
eapply agree_on_update_dead; try reflexivity.
eapply fresh_of_list; eauto.
Qed.
Hint Resolve lookup_list_agree : cset.
Require Import EqDec Computable Util LengthEq AutoIndTac.
Require Export CSet Containers.SetDecide.
Require Export MapBasics MapLookup MapUpdate.
Set Implicit Arguments.
Section MapLookupList.
Variable X : Type.
Context `{OrderedType X}.
Variable Y : Type.
Open Scope fmap_scope.
Fixpoint lookup_list (m:X → Y) (L:list X) : list Y :=
match L with
| nil ⇒ nil
| x::L ⇒ m x::lookup_list m L
end.
Lemma update_with_list_app (A A' : list X) (B B' : list Y) E
: length A = length B
→ update_with_list (A++A') (B++B') E = update_with_list A B (update_with_list A' B' E).
Proof.
intros. eapply length_length_eq in H0. general induction H0; simpl; eauto.
rewrite IHlength_eq; eauto.
Qed.
Lemma lookup_list_length (m:X → Y) (L:list X)
: length (lookup_list m L) = length L.
Proof.
induction L; simpl; eauto.
Qed.
Lemma lookup_list_agree (m m':X → Y) (L:list X)
: agree_on eq (of_list L) m m'
→ lookup_list m L = lookup_list m' L.
Proof.
general induction L; simpl in × |- *; eauto.
f_equal. eapply H0; cset_tac; eauto.
eapply IHL; eapply agree_on_incl; eauto. cset_tac; eauto.
Qed.
Lemma of_list_lookup_list `{OrderedType Y} (m:X → Y) L
: Proper (_eq ==> _eq) m
→ of_list (lookup_list m L) [=] lookup_set m (of_list L).
Proof.
general induction L; simpl.
+ intros x. cset_tac; firstorder. eapply lookup_set_spec in H2.
- dcr; cset_tac; firstorder.
- eauto.
+ rewrite IHL; eauto. intros x. split; intros.
- eapply lookup_set_spec; eauto. eapply add_iff in H2; destruct H2.
× eexists a; split; eauto. eapply add_1; eauto.
× eapply lookup_set_spec in H2; eauto. dcr. eexists x0; split; eauto.
eapply add_2; eauto.
- eapply lookup_set_spec in H2; eauto. dcr.
eapply add_iff in H4; destruct H4.
× eapply add_1. rewrite H5. eapply H1. eapply H2.
× eapply add_2. eapply lookup_set_spec; eauto.
Qed.
End MapLookupList.
Lemma lookup_id X (l:list X)
: lookup_list (@id X) l = l.
Proof.
general induction l; simpl; eauto.
f_equal; eauto.
Qed.
Global Instance update_with_list_inst X `{OrderedType X} Y `{OrderedType Y} :
Proper (eq ==> eq ==> (@feq X Y _eq ) ==> (@feq _ _ _eq)) (@update_with_list X _ Y).
Proof.
unfold respectful, Proper; intros. subst.
general induction y; simpl; eauto.
destruct y0; eauto. hnf; intros.
specialize (IHy H Y H0 y2 x1 y1 H3).
eapply update_inst; eauto.
Qed.
Global Instance lookup_list_inst X `{OrderedType X} Y:
Proper ((@feq X Y eq) ==> eq ==> eq) (@lookup_list X Y).
Proof.
unfold respectful, Proper, update, feq; intros; subst.
general induction y0; eauto.
simpl. f_equal; eauto.
Qed.
Lemma update_with_list_lookup_list X `{OrderedType X} Y `{OrderedType Y} (E:X → Y)
`{Proper _ (_eq ==> _eq) E} (Z : list X)
: @feq _ _ _eq (update_with_list Z (lookup_list E Z) E) E.
Proof.
general induction Z; simpl.
+ reflexivity.
+ setoid_rewrite IHZ; eauto. rewrite update_id; eauto. reflexivity.
Qed.
Lemma lookup_list_app X Y (A A':list X) (E:X → Y)
: lookup_list E (A ++ A') = List.app (lookup_list E A) (lookup_list E A').
Proof.
general induction A; simpl; eauto.
rewrite IHA; eauto.
Qed.
Lemma lookup_list_unique X `{OrderedType X} Y (Z:list X) (Z':list Y) f
: length Z = length Z'
→ unique Z
→ lookup_list (f [Z <-- Z']) Z = Z'.
Proof.
intros. length_equify. general induction H0; simpl in *; dcr; eauto.
- f_equal.
+ lud; intuition.
+ erewrite lookup_list_agree; eauto.
eapply agree_on_update_dead; try reflexivity.
eapply fresh_of_list; eauto.
Qed.
Hint Resolve lookup_list_agree : cset.