Lvc.IL.BlockType
Require Import AllInRel List Map Env AutoIndTac MoreList IL.
Set Implicit Arguments.
Class BlockType X := {
block_n : X → nat;
block_Z : X → list var
}.
Instance block_type_I : BlockType (I.block) :=
{
block_n := I.block_n;
block_Z := I.block_Z
}.
Instance block_type_F : BlockType (F.block) :=
{
block_n := F.block_n;
block_Z := F.block_Z
}.
Lemma mkBlocks_I_less
: ∀ (F : list (params × stmt)) (n k : nat) (b : I.block),
get (mapi_impl I.mkBlock k F) n b → I.block_n b ≤ k + length F - 1.
Proof.
intros; inv_get. simpl. eapply get_range in H. omega.
Qed.
Lemma mkBlock_I_i F
: ∀ i b, get (mapi I.mkBlock F) i b → i = I.block_n b.
Proof.
intros; inv_get; eauto.
Qed.
Lemma mkBlocks_F_less
: ∀ E (F : list (params × stmt)) (n k : nat) (b : F.block),
get (mapi_impl (F.mkBlock E) k F) n b → F.block_n b ≤ k + length F - 1.
Proof.
intros; inv_get. simpl. eapply get_range in H. omega.
Qed.
Lemma mkBlock_F_i E F
: ∀ i b, get (mapi (F.mkBlock E) F) i b → i = F.block_n b.
Proof.
intros; inv_get; eauto.
Qed.
Definition smaller {B} `{BlockType B} (L:list B) :=
∀ f b, get L f b → f ≥ block_n b.
Lemma smaller_I_mkBlocks L F
: smaller L
→ smaller (mapi I.mkBlock F ++ L).
Proof.
intros; hnf; intros.
eapply get_app_cases in H0.
destruct H0; dcr; inv_get; simpl; eauto.
exploit H; eauto; simpl in ×. omega.
Qed.
Lemma smaller_F_mkBlocks E L F
: smaller L
→ smaller (mapi (F.mkBlock E) F ++ L).
Proof.
intros; hnf; intros.
eapply get_app_cases in H0.
destruct H0; dcr; inv_get; simpl; eauto.
exploit H; eauto; simpl in ×. omega.
Qed.
Set Implicit Arguments.
Class BlockType X := {
block_n : X → nat;
block_Z : X → list var
}.
Instance block_type_I : BlockType (I.block) :=
{
block_n := I.block_n;
block_Z := I.block_Z
}.
Instance block_type_F : BlockType (F.block) :=
{
block_n := F.block_n;
block_Z := F.block_Z
}.
Lemma mkBlocks_I_less
: ∀ (F : list (params × stmt)) (n k : nat) (b : I.block),
get (mapi_impl I.mkBlock k F) n b → I.block_n b ≤ k + length F - 1.
Proof.
intros; inv_get. simpl. eapply get_range in H. omega.
Qed.
Lemma mkBlock_I_i F
: ∀ i b, get (mapi I.mkBlock F) i b → i = I.block_n b.
Proof.
intros; inv_get; eauto.
Qed.
Lemma mkBlocks_F_less
: ∀ E (F : list (params × stmt)) (n k : nat) (b : F.block),
get (mapi_impl (F.mkBlock E) k F) n b → F.block_n b ≤ k + length F - 1.
Proof.
intros; inv_get. simpl. eapply get_range in H. omega.
Qed.
Lemma mkBlock_F_i E F
: ∀ i b, get (mapi (F.mkBlock E) F) i b → i = F.block_n b.
Proof.
intros; inv_get; eauto.
Qed.
Definition smaller {B} `{BlockType B} (L:list B) :=
∀ f b, get L f b → f ≥ block_n b.
Lemma smaller_I_mkBlocks L F
: smaller L
→ smaller (mapi I.mkBlock F ++ L).
Proof.
intros; hnf; intros.
eapply get_app_cases in H0.
destruct H0; dcr; inv_get; simpl; eauto.
exploit H; eauto; simpl in ×. omega.
Qed.
Lemma smaller_F_mkBlocks E L F
: smaller L
→ smaller (mapi (F.mkBlock E) F ++ L).
Proof.
intros; hnf; intros.
eapply get_app_cases in H0.
destruct H0; dcr; inv_get; simpl; eauto.
exploit H; eauto; simpl in ×. omega.
Qed.