Lvc.Infra.MoreList

Require Import OrderedTypeEx Util LengthEq List Get Computable DecSolve AllInRel Omega.

Set Implicit Arguments.

Lemmas and tactics for lists


Lemma app_nil_eq X (L:list X) xl
  : L = xl ++ L xl = nil.
intros. rewrite <- (app_nil_l L ) in H at 1.
eauto using app_inv_tail.
Qed.

Lemma cons_app X (x:X) xl
  : x::xl = (x::nil)++xl.
eauto.
Qed.

Fixpoint tabulate X (x:X) n : list X :=
  match n with
    | 0 ⇒ nil
    | S nx::tabulate x n
  end.

Section ParametricZip.
  Variables X Y Z : Type.
  Hypothesis f : X Y Z : Type.

  Fixpoint zip (L:list X) (L':list Y) : list Z :=
    match L, L' with
      | x::L, y::L'f x y::zip L L'
      | _, _nil
    end.

  Lemma zip_get L L' n (x:X) (y:Y)
  : get L n x get L' n y get (zip L L') n (f x y).
  Proof.
    intros. general induction n; inv H; inv H0; simpl; eauto using get.
  Qed.

  Lemma get_zip L L' n (z:Z)
  : get (zip L L') n z
     { x : X & {y : Y | get L n x get L' n y f x y = z } } .
  Proof.
    intros. general induction L; destruct L'; isabsurd.
    simpl in H. destruct n.
    - eexists a; eexists y. inv H; eauto using get.
    - edestruct IHL as [x' [y' ?]]; dcr; try inv H; eauto 20 using get.
  Qed.

  Lemma zip_tl L L'
    : tl (zip L L') = zip (tl L) (tl L').
  Proof.
    general induction L; destruct L'; simpl; eauto.
    destruct L; simpl; eauto.
  Qed.

End ParametricZip.

Arguments zip [X] [Y] [Z] f L L'.
Arguments zip_get [X] [Y] [Z] f [L] [L'] [n] [x] [y] _ _.

Lemma map_zip X Y Z (f: X Y Z) W (g: Z W) L L'
: map g (zip f L L') = zip (fun x yg (f x y)) L L'.
Proof.
  general induction L; destruct L'; simpl; eauto using f_equal.
Qed.

Lemma zip_map_l X Y Z (f: X Y Z) W (g: W X) L L'
: zip f (map g L) L' = zip (fun x yf (g x) y) L L'.
Proof.
  general induction L; destruct L'; simpl; eauto using f_equal.
Qed.

Lemma zip_map_r X Y Z (f: X Y Z) W (g: W Y) L L'
: zip f L (map g L') = zip (fun x yf x (g y)) L L'.
Proof.
  general induction L; destruct L'; simpl; eauto using f_equal.
Qed.

Lemma zip_ext X Y Z (f f':X Y Z) L L'
 : ( x y, f x y = f' x y) zip f L L' = zip f' L L'.
Proof.
  general induction L; destruct L'; simpl; eauto.
  f_equal; eauto.
Qed.

Lemma zip_length X Y Z (f:XYZ) L L'
      : length (zip f L L') = min (length L) (length L').
Proof.
  general induction L; destruct L'; simpl; eauto.
Qed.

Lemma zip_length2 {X Y Z} {f:XYZ} DL ZL
: length DL = length ZL
   length (zip f DL ZL) = length DL.
Proof.
  intros. rewrite zip_length. rewrite H. rewrite Min.min_idempotent. eauto.
Qed.

Section ParametricMapIndex.
  Variables X Y : Type.
  Hypothesis f : nat X Y : Type.

  Fixpoint mapi_impl (n:nat) (L:list X) : list Y :=
    match L with
      | x::Lf n x::mapi_impl (S n) L
      | _nil
    end.

  Definition mapi := mapi_impl 0.

  Lemma mapi_impl_getT L i y n
  : getT (mapi_impl i L) n y { x : X & (getT L n x × (f (n+i) x = y))%type }.
  Proof.
    intros. general induction X0; simpl in *;
            destruct L; simpl in *; inv Heql;
          try now (econstructor; eauto using getT).
    edestruct IHX0; dcr; eauto using getT.
    eexists x1; split; eauto using getT.
    rewrite <- b. f_equal; omega.
  Qed.

  Lemma mapi_impl_get L i y n
  : get (mapi_impl i L) n y { x : X & (get L n x × (f (n+i) x = y))%type }.
  Proof.
    intros.
    eapply get_getT, mapi_impl_getT in H. dcr; eexists; split; eauto using getT_get.
  Qed.

  Lemma mapi_get L n y
  : get (mapi L) n y { x : X | get L n x f n x = y }.
  Proof.
    intros. eapply mapi_impl_get in H; dcr; subst.
    orewrite (n+0 = n). eauto.
  Qed.

  Lemma mapi_impl_length L {n}
  : length (mapi_impl n L) = length L.
  Proof.
    general induction L; simpl; eauto using f_equal.
  Qed.

  Lemma mapi_length L
    : length (mapi L) = length L.
  Proof.
    unfold mapi; eapply mapi_impl_length.
  Qed.

End ParametricMapIndex.

Arguments mapi [X] [Y] f L.
Arguments mapi_impl [X] [Y] f n L.

Lemma map_impl_mapi X Y Z L {n} (f:natXY) (g:YZ)
 : List.map g (mapi_impl f n L) = mapi_impl (fun n xg (f n x)) n L.
Proof.
  general induction L; simpl; eauto using f_equal.
Qed.

Lemma map_mapi X Y Z L (f:natXY) (g:YZ)
 : List.map g (mapi f L) = mapi (fun n xg (f n x)) L.
Proof.
  unfold mapi. eapply map_impl_mapi.
Qed.

Lemma mapi_map_ext X Y L (f:natXY) (g:XY) n
 : ( x n, g x = f n x)
    List.map g L = mapi_impl f n L.
Proof.
  intros. general induction L; unfold mapi; simpl; eauto.
  f_equal; eauto.
Qed.

Lemma map_ext_get_eq X Y L L' (f:XY)
  : ( x y n, get L n x get L' n y f x = y)
     length L = length L'
     List.map f L = L'.
Proof.
  intros GET LEN. length_equify.
  general induction LEN; unfold mapi; simpl; eauto.
  f_equal; eauto using get.
Qed.

Lemma map_ext_get_eq2 X Y L (f:XY) (g:XY)
 : ( x n, get L n x g x = f x)
    List.map g L = List.map f L.
Proof.
  intros. general induction L; unfold mapi; simpl; eauto.
  f_equal; eauto using get.
Qed.

Lemma map_ext_get X Y (R:Y Y Prop) L (f:XY) (g:XY)
 : ( x n, get L n x R (g x) (f x))
    PIR2 R (List.map g L) (List.map f L).
Proof.
  intros. general induction L; simpl. econstructor.
  econstructor; eauto using get.
Qed.

Lemma mapi_length_ass (X Y : Type) (f : nat X Y) L k
  : length L = k
     length (mapi f L) = k.
Proof.
  intros. subst. eapply mapi_length.
Qed.

Lemma mapi_length_ge_ass (X Y : Type) (f : nat X Y) L k
  : k length L
     k length (mapi f L).
Proof.
  intros. rewrite mapi_length; eauto.
Qed.

Lemma mapi_length_le_ass (X Y : Type) (f : nat X Y) L k
  : length L k
     length (mapi f L) k.
Proof.
  intros. rewrite mapi_length; eauto.
Qed.

Hint Resolve mapi_length_ass mapi_length_le_ass mapi_length_ge_ass : len.

Lemma get_mapi_impl X Y L (f:natXY) n x k
 : get L n x
    get (mapi_impl f k L) n (f (n+k) x).
Proof.
  intros. general induction H; simpl; eauto using get.
  econstructor. orewrite (S (n + k) = n + (S k)). eauto.
Qed.

Lemma get_mapi X Y L (f:natXY) n x
 : get L n x
    get (mapi f L) n (f n x).
Proof.
  intros. exploit (get_mapi_impl f 0 H); eauto.
  orewrite (n + 0 = n) in H0. eauto.
Qed.

Ltac list_eqs :=
  match goal with
    | [ H' : ?x :: ?L = ?L' ++ ?L |- _ ] ⇒
      rewrite cons_app in H'; eapply app_inv_tail in H'
    | [ H : ?L = ?L' ++ ?L |- _ ] ⇒
      let A := fresh "A" in
        eapply app_nil_eq in H
    | _fail "no matching assumptions"
  end.

Ltac inv_map H :=
  match type of H with
    | get (List.map ?f ?L) ?n ?x
      match goal with
        | [H' : get ?L ?n ?y |- _ ] ⇒
          let EQ := fresh "EQ" in pose proof (map_get f H' H) as EQ; invcs EQ
        | _let X := fresh "X" in let EQ := fresh "EQ" in
              pose proof (map_get_4 _ f H) as X; destruct X as [? [? EQ]]; invcs EQ
      end
  end.

Lemma list_eq_get {X:Type} (L L':list X) eqA n x
  : list_eq eqA L L' get L n x x', get L' n x' eqA x x'.
Proof.
  intros. general induction H.
  inv H0.
  inv H1. eauto using get.
  edestruct IHlist_eq; eauto. firstorder using get.
Qed.

Instance list_R_dec A (R:AAProp)
         `{ a b, Computable (R a b)} (L:list A) (L':list A) :
  Computable ( n a b, get L n a get L' n b R a b).
Proof.
  general induction L; destruct L'.
  + left; isabsurd.
  + left; isabsurd.
  + left; isabsurd.
  + decide (R a a0). edestruct IHL; eauto.
    left. intros. inv H0; inv H1; eauto.
    right. intro. eapply n; intros. eapply H0; eauto using get.
    right. intro. eapply n. eauto using get.
Qed.

Lemma list_eq_length A R l l'
  : @list_eq A R l l' length l = length l'.
Proof.
  intros. induction H; simpl; eauto.
Qed.

Instance list_eq_computable X (R:X X Prop) `{ x y, Computable (R x y)}
: (L L':list X), Computable (list_eq R L L').
Proof.
  intros. decide (length L = length L').
  - general induction L; destruct L'; isabsurd; try dec_solve.
    decide (R a x); try dec_solve.
    edestruct IHL with (L':=L'); eauto; try dec_solve.
  - right; intro. exploit list_eq_length; eauto.
Qed.

Lemma list_eq_nth X (R : relation X) `{Reflexive _ R} (L L' : list X) (x : X) n
 : list_eq R L L' R (nth n L x) (nth n L' x).
Proof.
intro H0. revert n.
induction H0; intros.
- apply H.
- destruct n; simpl.
  + eauto.
  + apply IHlist_eq.
Qed.

Ltac inv_mapi H :=
  match type of H with
    | get (mapi ?f ?L) ?n ?x
      match goal with
        | [H' : get ?L ?n ?y |- _ ] ⇒
          let EQ := fresh "EQ" in pose proof (mapi_get f H' H) as EQ; invc EQ
        | _let X := fresh "X" in let EQ := fresh "EQ" in
              pose proof (mapi_get f _ H) as X; destruct X as [? [? EQ]]; invc EQ;
             clear_trivial_eqs
      end
  end.

Instance list_get_computable X (Y:list X) (R:XProp) `{ (x:X), Computable (R x)}
: Computable ( n y, get Y n y R y).
Proof.
  hnf. general induction Y.
  - left; isabsurd.
  - decide (R a).
    + edestruct IHY; eauto.
      × left; intros. inv H0; eauto using get.
      × right; intros; eauto using get.
    + right; eauto using get.
Defined.

Lemma mapi_get_1 k X Y (L:list X) (f:nat X Y) n x
: get L n x get (mapi_impl f k L) n (f (k+n) x).
Proof.
  intros. general induction H; simpl in *; eauto using get.
  - orewrite (k + 0 = k); eauto using get.
  - orewrite (k + S n = S k + n); eauto using get.
Qed.

Lemma zip_app X Y Z (f : X Y Z) (xl:list X) (yl:list Y) xl' yl'
: length xl = length yl
   zip f (xl ++ xl') (yl ++ yl') = zip f xl yl ++ zip f xl' yl'.
Proof.
  intros. length_equify. general induction H; simpl; f_equal; eauto.
Qed.

Lemma zip_rev X Y Z (f : X Y Z) (xl:list X) (yl:list Y)
: length xl = length yl
   zip f (rev xl) (rev yl) = rev (zip f xl yl).
Proof.
  intros. length_equify. general induction H; simpl; eauto.
  rewrite zip_app.
  - rewrite IHlength_eq; eauto.
  - repeat rewrite rev_length; eauto using length_eq_length.
Qed.

Lemma zip_eq_app_inv X Y Z (f:XYZ) L L' AL DL
: length AL = length DL
   L ++ L' = zip f AL DL
   AL1 AL2 DL1 DL2,
      AL = AL1 ++ AL2 DL = DL1 ++ DL2 L = zip f AL1 DL1 L' = zip f AL2 DL2
      length AL1 = length DL1 length AL2 = length DL2.
Proof.
  intros. general induction L; simpl in *; subst.
  - eexists nil, AL, nil, DL; simpl; intuition.
  - destruct AL, DL; simpl in *; isabsurd. inv H0.
    exploit IHL; try eapply H3. omega. dcr; subst.
    eexists (x::x0), x1, (y::x2), x3; simpl; intuition.
Qed.

Lemma zip_eq_cons_inv X Y Z (f:XYZ) a L L1 L2
: a :: L = zip f L1 L2
    b c L1' L2', b::L1'=L1 c::L2'=L2 a = f b c L = zip f L1' L2'.
Proof.
  intros. destruct L1, L2; isabsurd.
  do 4 eexists; intuition; simpl in H; inv H; eauto.
Qed.

Lemma zip_pair_inv X Y (AL1 AL2:list X) (DL1 DL2:list Y)
: length AL1 = length DL1
   length AL2 = length DL2
   zip pair AL1 DL1 = zip pair AL2 DL2
   AL1 = AL2 DL1 = DL2.
Proof.
  intros. length_equify. general induction H; inv H0; simpl in *; isabsurd; eauto.
  - inv H1.
    exploit IHlength_eq; try eapply H5; eauto; dcr; subst; eauto.
Qed.

Lemma zip_pair_app_inv X Y (AL AL1 AL2:list X) (DL DL1 DL2:list Y)
: length AL1 = length DL1
   length AL2 = length DL2
   length AL = length DL
   zip pair AL DL = zip pair (AL1 ++ AL2) (DL1 ++ DL2)
   AL = AL1 ++ AL2 DL = DL1 ++ DL2.
Proof.
  intros. length_equify. general induction H1.
  - inv H; inv H0; simpl in *; isabsurd; eauto.
  - inv H; simpl in *; isabsurd.
    + inv H0; simpl in *; isabsurd.
      inv H2. exploit (IHlength_eq nil XL0 nil YL0); eauto. dcr; subst. intuition.
    + inv H2. exploit (IHlength_eq XL0 AL2 YL0 DL2); eauto. dcr; subst. intuition.
Qed.

Ltac inv_zip H :=
  match type of H with
    | get (zip ?f ?L ?L') ?n ?x
      match goal with

        | _let X := fresh "X" in let EQ := fresh "EQ" in
              pose proof (get_zip f _ _ H) as X; destruct X as [? [? [? EQ]]]; invc EQ
      end
  end.

Lemma zip_length_ass (X Y Z : Type) (f : X Y Z) (L : list X) (L' : list Y) k
  : length L = length L'
     k = length L
     length (zip f L L') = k.
Proof.
  intros; subst; eauto using zip_length2.
Qed.

Hint Resolve zip_length_ass | 10 : len.

Lemma fold_zip_length_ass (X Y Z : Type) (f : X Y Y) DL a AP k
  : length AP = length DL
     length DL = k
     length (fold_left (fun AP0 (z:Z) ⇒ zip f DL AP0) a AP) = k.
Proof.
  intros. subst. general induction a; simpl; eauto with len.
  rewrite IHa; eauto with len.
Qed.

Hint Resolve fold_zip_length_ass : len.

Lemma zip_ext_get X Y Z (f f':X Y Z) L L'
 : ( x y n, get L n x get L' n y f x y = f' x y) zip f L L' = zip f' L L'.
Proof.
  general induction L; destruct L'; simpl; eauto.
  f_equal; eauto using get.
Qed.

Lemma zip_ext_get2 X1 Y1 X2 Y2 Z (f1:X1 Y1 Z) (f2:X2 Y2 Z) L1 L1' L2 L2'
  : length L1 = length L2
     length L1' = length L2'
     ( x1 y1 x2 y2 n,
          get L1 n x1 get L1' n y1
          get L2 n x2 get L2' n y2
          f1 x1 y1 = f2 x2 y2)
     zip f1 L1 L1' = zip f2 L2 L2'.
Proof.
  intros LEN1 LEN2 GET. length_equify.
  general induction LEN1; inv LEN2; simpl in × |- *; eauto.
  f_equal; eauto 20 using get.
Qed.

Lemma zip_get_eq X Y Z (f:X Y Z) L L' n (x:X) (y:Y)
  : get L n x get L' n y fxy, fxy = f x y get (zip f L L') n fxy.
Proof.
  intros. general induction n; inv H; inv H0; simpl; eauto using get.
Qed.

Lemma zip_ext_PIR2 X Y Z (f:X Y Z) X' Y' Z' (f':X'Y'Z') (R:ZZ'Prop) L1 L2 L1' L2'
: length L1 = length L2
   length L1' = length L2'
   length L1 = length L1'
   ( n x y x' y', get L1 n x get L2 n y get L1' n x' get L2' n y' R (f x y) (f' x' y'))
   PIR2 R (zip f L1 L2) (zip f' L1' L2').
Proof.
  intros A B C.
  length_equify. general induction A; inv B; inv C; simpl; eauto 50 using PIR2, get.
Qed.

Lemma zip_PIR2 X Y (eqA:Y Y Prop) (f:X X Y) l l'
  : ( x y, eqA (f x y) (f y x))
     PIR2 eqA (zip f l l') (zip f l' l).
Proof.
  general induction l; destruct l'; simpl; try now econstructor.
  econstructor; eauto.
Qed.

Lemma zip_sym X Y Z (f : X Y Z) (L:list X) (L':list Y)
: zip f L L' = zip (fun x yf y x) L' L.
Proof.
  intros. general induction L; destruct L'; simpl; eauto.
  f_equal; eauto.
Qed.

Require Import Take Drop.

Lemma take_eta n X (L:list X)
  : L = take n L ++ drop n L.
Proof.
  general induction n; eauto.
  - destruct L; simpl.
    + rewrite drop_nil; eauto.
    + f_equal; eauto.
Qed.

Notation "f ⊜ L1 L2" := (zip f L1 L2) (at level 40, L1 at level 0, L2 at level 0).

Create HintDb inv_get discriminated.

Ltac inv_get_step0 dummy :=
  match goal with
  | [ H : get (take _ ?L) ?n ?x |- _ ] ⇒ eapply take_get in H; destruct H
  | [ H : get (drop _ ?L) ?n ?x |- _ ] ⇒ eapply get_drop in H
  | [ H : get (zip ?f ?L ?L') ?n ?x |- _ ] ⇒
    let X := fresh "X" in
    let EQ := fresh "EQ" in
    let GET := fresh "GET" in
    pose proof (get_zip f _ _ H) as X; destruct X as [? [? [? [GET EQ]]]];
    try (subst x);
    try (simplify_eq EQ); intros;
    clear H; rename GET into H
  | [ H : get (List.map ?f ?L) ?n ?x |- _ ]=>
    match goal with
    | [H' : get ?L ?n ?y |- _ ] ⇒
      let EQ := fresh "EQ" in pose proof (map_get f H' H) as EQ; clear H; invcs EQ
    | _let X := fresh "X" in
          let EQ := fresh "EQ" in
          let GET := fresh "GET" in
          pose proof (map_get_4 _ f H) as X; destruct X as [? [GET EQ]]; try (subst x);
          try (simplify_eq EQ); intros;
          clear H; rename GET into H
    end
  | [ H: get (?A ++ ?B) ?n _, H' : get ?A ?n _ |- _ ] ⇒
    eapply (get_app_lt_1 _ _ (get_range H')) in H
  | [ H: get (?A ++ ?B) ?n _, H' : ?n < length ?A |- _ ] ⇒
    eapply (get_app_lt_1 _ _ H') in H
  | [ H: get (List.map _ ?A ++ ?B) ?n _, H' : get ?A ?n _ |- _ ] ⇒
    eapply (get_app_lt_1 _ _ (map_length_lt_ass_right _ _ (get_range H'))) in H
  | [ H: get (List.map _ ?A ++ ?B) ?n _, H' : ?n < length ?A |- _ ] ⇒
    eapply (get_app_lt_1 _ _ (map_length_lt_ass_right _ _ H')) in H
  | [ H: get (?A ++ ?B) (length ?A) _ |- _ ] ⇒
    eapply (get_length_app_eq) in H; [simplify_eq H; intros; clear_trivial_eqs | reflexivity]
  | [ H: get (List.map _ ?A ++ ?B) (length ?A) _ |- _ ] ⇒
    eapply get_length_app_eq in H; [simplify_eq H; intros; clear_trivial_eqs | eauto with len]
  | [ H: get (?A ++ ?B) ?n _, H' : ?n > length ?A |- _ ] ⇒
    eapply get_length_right in H; [| eapply H']
  | [ H: get (List.map _ ?A ++ ?B) ?n _, H' : ?n > length ?A |- _ ] ⇒
    eapply get_length_right in H; [| rewrite map_length; eapply H']
  | [ H: get (?A ++ ?B) (❬?A + _) _ |- _ ] ⇒ eapply shift_get in H
  | [ H: get (?f ?A ++ ?B) (❬?A + _) _ |- _ ] ⇒
    rewrite <- (map_length f A) in H; eapply shift_get in H
  | [ H: get (?f ?A ++ ?B) (❬?C + _) _, H' : ❬?C = ❬?A |- _ ] ⇒
    rewrite H' in H; rewrite <- (map_length f A) in H; eapply shift_get in H
  | [ H : get (mapi ?f ?L) ?n ?x |- _ ] ⇒
    let X := fresh "X" in
    let EQ := fresh "EQ" in
    pose proof (mapi_get f _ H) as X; destruct X as [? [GET EQ]];
    try (simplify_eq EQ); intros;
    clear H; rename GET into H
  | [ H : get (mapi_impl ?f ?k ?L) ?n ?x |- _ ] ⇒
    let X := fresh "X" in
    let EQ := fresh "EQ" in
    pose proof (mapi_impl_get f _ k H) as X; destruct X as [? [GET EQ]];
    try (simplify_eq EQ); intros;
    clear H; rename GET into H
  | [ Get : get ?L ?n _, Len : ❬?L = ❬?L' |- _ ] ⇒
    is_var L';
    match goal with
    | [ H : get L' n _ |- _ ] ⇒ fail 1
    | _destruct (get_length_eq _ Get Len)
    end
  | [ Get : get ?L ?n _, Len : ❬?L' = ❬?L |- _ ] ⇒
    is_var L';
    match goal with
    | [ H : get L' n _ |- _ ] ⇒ fail 1
    | _destruct (get_length_eq _ Get (eq_sym Len))
    end
  end.

Tactic Notation "inv_get_step" := inv_get_step0 idtac.

Ltac inv_get' tac :=
  repeat (repeat get_functional; tac idtac; repeat get_functional);
  clear_trivial_eqs; repeat clear_dup.

Tactic Notation "inv_get" := inv_get' inv_get_step0.

Lemma zip_length_lt_ass (X Y Z : Type) (f : X Y Z) (L : list X) (L' : list Y) k
  : length L = length L'
     k < length L
     k < length (zip f L L').
Proof.
  intros. rewrite zip_length2; eauto.
Qed.

Hint Resolve zip_length_lt_ass : len.

Lemma zip_zip X X' Y Y' Z (f:XYZ) (g1:X'Y'X) (g2:X'Y'Y) L L'
: zip f (zip g1 L L') (zip g2 L L') =
  zip (fun x yf (g1 x y) (g2 x y)) L L'.
Proof.
  intros. general induction L; destruct L'; simpl; eauto.
  f_equal; eauto.
Qed.

Lemma drop_zip X Y Z (f:XYZ) L L' n
: drop n (zip f L L') = zip f (drop n L) (drop n L').
Proof.
  intros.
  general induction L; destruct L'; destruct n; simpl; repeat rewrite drop_nil; eauto.
  - destruct (drop n L); simpl; eauto.
Qed.

Lemma zip_map_fst X Y (L:list X) (L':list Y)
  : length L = length L'
     zip (fun x _x) L L' = L.
Proof.
  intros. length_equify.
  general induction H; eauto; simpl in ×.
  f_equal; eauto.
Qed.

Lemma zip_length3 {X Y Z} {f:XYZ} DL ZL
: length DL length ZL
   length (zip f DL ZL) = length DL.
Proof.
  intros. rewrite zip_length. rewrite Min.min_l; eauto.
Qed.

Lemma zip_length4 {X Y Z} {f:XYZ} DL ZL
: length ZL length DL
   length (zip f DL ZL) = length ZL.
Proof.
  intros. rewrite zip_length. rewrite Min.min_r; eauto.
Qed.

Lemma zip_length_le_ass_right (X Y Z : Type) (f : X Y Z) (L : list X) (L' : list Y) k
  : length L = length L'
     k length L
     k length (zip f L L').
Proof.
  intros; subst; rewrite zip_length2; eauto.
Qed.

Hint Resolve zip_length_le_ass_right : len.

Lemma take_zip (X Y Z : Type) (f : X Y Z) (L : list X) (L' : list Y) n
  : take n (zip f L L') = zip f (take n L) (take n L').
Proof.
  intros. general induction n; simpl; eauto.
  - destruct L, L'; simpl; eauto.
    f_equal; eauto.
Qed.

Instance zip_eq_m (X Y Z : Type)
  : Proper (eq ==> eq ==> eq ==> eq) (@zip X Y Z).
Proof.
  unfold Proper, respectful; intros; subst; eauto.
Qed.

Lemma fold_list_length A B (f:list B (list A × bool) list B) (a:list (list A × bool)) (b: list B)
  : ( n aa, get a n aa b fst aa)
     ( aa b, b fst aa f b aa = b)
     length (fold_left f a b) = b.
Proof.
  intros LEN.
  general induction a; simpl; eauto.
  erewrite IHa; eauto 10 using get with len.
  intros. rewrite H; eauto using get.
Qed.

Lemma mapi_app X Y (f:nat X Y) n L L'
: mapi_impl f n (L++L') = mapi_impl f n L ++ mapi_impl f (n+length L) L'.
Proof.
  general induction L; simpl; eauto.
  - orewrite (n + 0 = n); eauto.
  - f_equal. rewrite IHL. f_equal; f_equal. omega.
Qed.

Lemma fst_zip_pair X Y (L:list X) (L':list Y) (LEN:L = L')
  : fst pair L L' = L.
Proof.
  length_equify.
  general induction LEN; simpl; f_equal; eauto.
Qed.