Lvc.Infra.Option
Cast option in the framework of Monad. The code in this file is taken from CompCert.
Notation "⎣ x ⎦" := (Some x) (at level 0, x at level 200).
Notation "⎣⎦" := (None) (at level 0).
Set Implicit Arguments.
Definition bind (A B : Type) (x : option A) (g : A → option B) : option B :=
match x with
| Some a ⇒ g a
| None ⇒ None
end.
Extraction Inline bind.
Notation "'mdo' X <- A ; B" := (bind A (fun X ⇒ B))
(at level 200, X ident, A at level 100, B at level 200).
Lemma bind_inversion_Some (A B : Type) (f : option A) (g : A → option B) (y : B) :
bind f g = Some y → { x : A | f = Some x ∧ g x = Some y }.
Proof.
destruct f. firstorder. discriminate.
Qed.
Lemma bind_inversion_None {A B : Type} (f : option A) (g : A → option B) :
bind f g = None → f = None ∨ ∃ x, f = Some x ∧ g x = None.
Proof.
destruct f; firstorder.
Qed.
Lemma bind_inversion_Some_equiv (A B : Type) `{Equivalence B}
(f : option A) (g : A → option B) (y : B) :
bind f g === Some y → { x : A | f = Some x ∧ g x === Some y }.
Proof.
intros.
destruct f; simpl in ×. firstorder.
intros; exfalso. inversion H0.
Qed.
Lemma bind_inversion_None_equiv {A B : Type} `{Equivalence B} (f : option A) (g : A → option B) :
bind f g === None → f = None ∨ ∃ x, f = Some x ∧ g x = None.
Proof.
destruct f; firstorder.
inversion H0; subst; eauto.
Qed.
Lemma option_eq_inv X R (x:X) x'
: @option_eq _ R (Some x) (Some x') → R x x'.
Proof.
inversion 1; eauto.
Qed.
Ltac monad_simpl :=
match goal with
| [ H: ?F = _ |- context [bind ?F ?G = _] ] ⇒ rewrite H; simpl
end.
Ltac monad_inv H :=
match type of H with
| (Some _ = Some _) ⇒
inversion H; clear H; try subst
| (None = Some _) ⇒
inversion H
| (Some _ = None) ⇒
inversion H
| (Some _ === Some _) ⇒
eapply option_eq_inv in H; try subst
| (None === Some _) ⇒
exfalso; inversion H
| (Some _ === None) ⇒
exfalso; inversion H
| (bind ?F ?G = Some ?X) ⇒
let x := fresh "x" in
let EQ1 := fresh "EQ" in
let EQ2 := fresh "EQ" in
destruct (bind_inversion_Some F G H) as [x [EQ1 EQ2]];
clear H;
try (monad_inv EQ2)
| (bind ?F ?G = None) ⇒
let x := fresh "x" in
let EQ1 := fresh "EQ" in
let EQ2 := fresh "EQ" in
destruct (bind_inversion_None F G H) as [|[x [EQ1 EQ2]]];
clear H;
try (monad_inv EQ2)
| (bind ?F ?G === Some ?X) ⇒
let x := fresh "x" in
let EQ1 := fresh "EQ" in
let EQ2 := fresh "EQ" in
destruct (bind_inversion_Some_equiv F G H) as [x [EQ1 EQ2]];
clear H;
try (monad_inv EQ2)
| (bind ?F ?G === None) ⇒
let x := fresh "x" in
let EQ1 := fresh "EQ" in
let EQ2 := fresh "EQ" in
destruct (bind_inversion_None_equiv F G H) as [|[x [EQ1 EQ2]]];
clear H;
try (monad_inv EQ2)
end.
Inductive option_R_Some (A B : Type) (eqA : A → B → Prop)
: option A → option B → Prop :=
| Option_R_Some a b : eqA a b → option_R_Some eqA ⎣a⎦ ⎣b⎦.
Lemma option_R_Some_refl A R `{Reflexive A R} : ∀ x, option_R_Some R ⎣x⎦ ⎣x⎦.
intros; eauto using option_R_Some.
Qed.
Instance option_R_Some_sym A R `{Symmetric A R} : Symmetric (option_R_Some R).
hnf; intros ? [] []; eauto using option_R_Some.
Qed.
Instance option_R_trans A R `{Transitive A R} : Transitive (option_R_Some R).
hnf; intros. inversion H0; subst; inversion H1; subst; econstructor; eauto.
Qed.
Hint Extern 5 ⇒
match goal with
| [ H : ?A = ⎣ true ⎦, H' : ?A = ⎣ false ⎦ |- _ ] ⇒ exfalso; rewrite H in H'; inv H'
| [ H : ?A ≠ ⎣ ?t ⎦, H' : ?A = ⎣ ?t ⎦ |- _ ] ⇒ exfalso; rewrite H' in H; eapply H; reflexivity
| [ H : ?A = None , H' : ?A = Some _ |- _ ] ⇒ exfalso; rewrite H' in H; inv H
| [ H : ?A ≠ ⎣ true ⎦ , H' : ?A ≠ ⎣ false ⎦ |- ?A = None ] ⇒
case_eq (A); [intros [] ?| intros ?]; congruence
end.