Lvc.Infra.Terminating
Require Import Util Get ListUpdateAt PartialOrder AllInRel.
Set Implicit Arguments.
Inductive terminates X (R: X → X → Prop) : X → Prop :=
| terminatesI x : (∀ y, R x y → terminates R y) → terminates R x.
Class Terminating X (R: X → X → Prop) : Prop :=
terminating : ∀ x, terminates R x.
Arguments Terminating X R : clear implicits.
Instance terminating_list Dom `{PO:PartialOrder Dom}
: Terminating Dom poLt
→ Terminating (list Dom) poLt.
Proof.
intros. hnf; intros.
assert (LE:poLe x x) by reflexivity.
revert LE. generalize x at 2 3.
induction x; intros.
- inv LE. econstructor. intros ? [A B].
inv A. exfalso. eapply B. reflexivity.
- invc LE.
specialize (H a).
revert y pf YL H3.
induction H; intros.
assert (poLe x x) by reflexivity.
revert y pf YL H3. specialize (IHx _ H1). clear H1.
induction IHx; intros.
econstructor. intros ? [A B]; inv A.
decide (poEq YL YL0).
+ decide (poEq y y1).
exfalso; apply B; econstructor; eauto.
eapply (H0 y1); eauto.
+ eapply (H2 YL0); eauto.
rewrite H3. split; eauto.
Qed.
Lemma terminates_get_list Dom `{PO:PartialOrder Dom} L
: terminates poLt L
→ ∀ n x, get L n x → terminates poLt x.
Proof.
intro Trm.
induction Trm; intros.
+ econstructor; intros.
eapply H0. instantiate (1:=list_update_at x n y).
× revert H1 H2. clear_all.
general induction x; simpl; isabsurd.
inv H1.
split. econstructor; eauto.
intro. eapply H2. inv H; eauto.
exploit IHx; eauto. split; eauto.
econstructor; eauto. eapply H.
intro. eapply H. inv H0; eauto.
× eapply list_update_at_get_3; eauto.
Qed.
Lemma terminates_list_get Dom `{PO:PartialOrder Dom} L
: (∀ n x, get L n x → terminates poLt x)
→ terminates poLt L.
Proof.
intros.
assert (LE:poLe L L) by reflexivity.
revert LE. generalize L at 2 3.
induction L; intros.
- inv LE. econstructor. intros ? [A B].
inv A. exfalso. eapply B. reflexivity.
- invc LE.
pose proof (H 0 a (getLB _ _)).
revert y pf YL H3.
induction H0; intros.
exploit IHL; [ eauto using get | reflexivity |].
revert y pf YL H3.
induction H2; intros.
econstructor. intros ? [A B]; inv A.
decide (poEq YL YL0).
+ decide (poEq y y1).
exfalso; eapply B; econstructor; eauto.
eapply (H1 y1); eauto.
intros ? ? Get; inv Get; eauto using get.
+ assert (poLe x0 YL0) by (etransitivity; eauto).
assert (poLt x0 YL0) by (rewrite H4; split; eauto).
eapply H3; eauto.
× intros ? ? Get. inv Get; eauto using get.
exploit H2 as Trm; eauto using get.
eapply terminates_get_list in Trm; eauto.
× intros. eapply H1; eauto.
intros ? ? Get; inv Get; eauto using get.
Qed.
Lemma terminating_sig Dom `{PO:PartialOrder Dom}
: Terminating Dom poLt
→ ∀ P, Terminating { x : Dom | P x } poLt.
Proof.
intros Trm P [x Px].
specialize (Trm x).
induction Trm.
econstructor.
intros [y Py] [LE NEQ]; simpl in ×.
eapply H0. split; eauto.
Qed.
Lemma terminating_pair Dom `{PO:PartialOrder Dom} Dom' `{PO':PartialOrder Dom'}
: Terminating Dom poLt
→ Terminating Dom' poLt
→ Terminating (Dom × Dom') poLt.
Proof.
intros Trm1 Trm2 [x y].
specialize (Trm1 x).
specialize (Trm2 y).
assert (H:poLe y y) by reflexivity; revert H.
generalize y at 2 3.
induction Trm1.
assert (H':poLe x x) by reflexivity; revert H'.
generalize x at 2 3.
induction Trm2.
econstructor.
intros [z z'] [[LE1 LE2] NEQ]; simpl in ×.
decide (poEq x1 z).
+ decide (poEq y z').
exfalso; eapply NEQ; eauto.
eapply (H2 z'); eauto.
+ eapply H0; eauto.
Qed.
Lemma terminating_bool
: Terminating bool poLt.
Proof.
intros x.
econstructor. intros y [A B].
destruct x, y; simpl in *; isabsurd.
econstructor. intros [] [A' B']; isabsurd.
Qed.
Set Implicit Arguments.
Inductive terminates X (R: X → X → Prop) : X → Prop :=
| terminatesI x : (∀ y, R x y → terminates R y) → terminates R x.
Class Terminating X (R: X → X → Prop) : Prop :=
terminating : ∀ x, terminates R x.
Arguments Terminating X R : clear implicits.
Instance terminating_list Dom `{PO:PartialOrder Dom}
: Terminating Dom poLt
→ Terminating (list Dom) poLt.
Proof.
intros. hnf; intros.
assert (LE:poLe x x) by reflexivity.
revert LE. generalize x at 2 3.
induction x; intros.
- inv LE. econstructor. intros ? [A B].
inv A. exfalso. eapply B. reflexivity.
- invc LE.
specialize (H a).
revert y pf YL H3.
induction H; intros.
assert (poLe x x) by reflexivity.
revert y pf YL H3. specialize (IHx _ H1). clear H1.
induction IHx; intros.
econstructor. intros ? [A B]; inv A.
decide (poEq YL YL0).
+ decide (poEq y y1).
exfalso; apply B; econstructor; eauto.
eapply (H0 y1); eauto.
+ eapply (H2 YL0); eauto.
rewrite H3. split; eauto.
Qed.
Lemma terminates_get_list Dom `{PO:PartialOrder Dom} L
: terminates poLt L
→ ∀ n x, get L n x → terminates poLt x.
Proof.
intro Trm.
induction Trm; intros.
+ econstructor; intros.
eapply H0. instantiate (1:=list_update_at x n y).
× revert H1 H2. clear_all.
general induction x; simpl; isabsurd.
inv H1.
split. econstructor; eauto.
intro. eapply H2. inv H; eauto.
exploit IHx; eauto. split; eauto.
econstructor; eauto. eapply H.
intro. eapply H. inv H0; eauto.
× eapply list_update_at_get_3; eauto.
Qed.
Lemma terminates_list_get Dom `{PO:PartialOrder Dom} L
: (∀ n x, get L n x → terminates poLt x)
→ terminates poLt L.
Proof.
intros.
assert (LE:poLe L L) by reflexivity.
revert LE. generalize L at 2 3.
induction L; intros.
- inv LE. econstructor. intros ? [A B].
inv A. exfalso. eapply B. reflexivity.
- invc LE.
pose proof (H 0 a (getLB _ _)).
revert y pf YL H3.
induction H0; intros.
exploit IHL; [ eauto using get | reflexivity |].
revert y pf YL H3.
induction H2; intros.
econstructor. intros ? [A B]; inv A.
decide (poEq YL YL0).
+ decide (poEq y y1).
exfalso; eapply B; econstructor; eauto.
eapply (H1 y1); eauto.
intros ? ? Get; inv Get; eauto using get.
+ assert (poLe x0 YL0) by (etransitivity; eauto).
assert (poLt x0 YL0) by (rewrite H4; split; eauto).
eapply H3; eauto.
× intros ? ? Get. inv Get; eauto using get.
exploit H2 as Trm; eauto using get.
eapply terminates_get_list in Trm; eauto.
× intros. eapply H1; eauto.
intros ? ? Get; inv Get; eauto using get.
Qed.
Lemma terminating_sig Dom `{PO:PartialOrder Dom}
: Terminating Dom poLt
→ ∀ P, Terminating { x : Dom | P x } poLt.
Proof.
intros Trm P [x Px].
specialize (Trm x).
induction Trm.
econstructor.
intros [y Py] [LE NEQ]; simpl in ×.
eapply H0. split; eauto.
Qed.
Lemma terminating_pair Dom `{PO:PartialOrder Dom} Dom' `{PO':PartialOrder Dom'}
: Terminating Dom poLt
→ Terminating Dom' poLt
→ Terminating (Dom × Dom') poLt.
Proof.
intros Trm1 Trm2 [x y].
specialize (Trm1 x).
specialize (Trm2 y).
assert (H:poLe y y) by reflexivity; revert H.
generalize y at 2 3.
induction Trm1.
assert (H':poLe x x) by reflexivity; revert H'.
generalize x at 2 3.
induction Trm2.
econstructor.
intros [z z'] [[LE1 LE2] NEQ]; simpl in ×.
decide (poEq x1 z).
+ decide (poEq y z').
exfalso; eapply NEQ; eauto.
eapply (H2 z'); eauto.
+ eapply H0; eauto.
Qed.
Lemma terminating_bool
: Terminating bool poLt.
Proof.
intros x.
econstructor. intros y [A B].
destruct x, y; simpl in *; isabsurd.
econstructor. intros [] [A' B']; isabsurd.
Qed.