Lvc.paco.paco10
Section Arg10_1.
Definition monotone10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 (gf: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 → rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) :=
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 r r´ (IN: gf r x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) (LE: r <10= r´), gf r´ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9.
Variable T0 : Type.
Variable T1 : ∀ (x0: @T0), Type.
Variable T2 : ∀ (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable T9 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7), Type.
Variable gf : rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 → rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9.
Implicit Arguments gf [].
Theorem paco10_acc: ∀
l r (OBG: ∀ rr (INC: r <10= rr) (CIH: l <_paco_10= rr), l <_paco_10= paco10 gf rr),
l <10= paco10 gf r.
Proof.
intros; assert (SIM: paco10 gf (r \10/ l) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) by eauto.
clear PR; repeat (try left; do 11 paco_revert; paco_cofix_auto).
Qed.
Theorem paco10_mon: monotone10 (paco10 gf).
Proof. paco_cofix_auto; repeat (left; do 11 paco_revert; paco_cofix_auto). Qed.
Theorem paco10_mult_strong: ∀ r,
paco10 gf (paco10 gf r \10/ r) <10= paco10 gf r.
Proof. paco_cofix_auto; repeat (left; do 11 paco_revert; paco_cofix_auto). Qed.
Corollary paco10_mult: ∀ r,
paco10 gf (paco10 gf r) <10= paco10 gf r.
Proof. intros; eapply paco10_mult_strong, paco10_mon; eauto. Qed.
Theorem paco10_fold: ∀ r,
gf (paco10 gf r \10/ r) <10= paco10 gf r.
Proof. intros; econstructor; [ |eauto]; eauto. Qed.
Theorem paco10_unfold: ∀ (MON: monotone10 gf) r,
paco10 gf r <10= gf (paco10 gf r \10/ r).
Proof. unfold monotone10; intros; destruct PR; eauto. Qed.
End Arg10_1.
Hint Unfold monotone10.
Hint Resolve paco10_fold.
Implicit Arguments paco10_acc [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_mon [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_mult_strong [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_mult [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_fold [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_unfold [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Instance paco10_inst T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 (gf : rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9→_) r x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : paco_class (paco10 gf r x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) :=
{ pacoacc := paco10_acc gf;
pacomult := paco10_mult gf;
pacofold := paco10_fold gf;
pacounfold := paco10_unfold gf }.
2 Mutual Coinduction
Section Arg10_2.
Definition monotone10_2 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 (gf: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 → rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 → rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) :=
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 r_0 r_1 r´_0 r´_1 (IN: gf r_0 r_1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) (LE_0: r_0 <10= r´_0)(LE_1: r_1 <10= r´_1), gf r´_0 r´_1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9.
Variable T0 : Type.
Variable T1 : ∀ (x0: @T0), Type.
Variable T2 : ∀ (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable T9 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7), Type.
Variable gf_0 gf_1 : rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 → rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 → rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Theorem paco10_2_0_acc: ∀
l r_0 r_1 (OBG: ∀ rr (INC: r_0 <10= rr) (CIH: l <_paco_10= rr), l <_paco_10= paco10_2_0 gf_0 gf_1 rr r_1),
l <10= paco10_2_0 gf_0 gf_1 r_0 r_1.
Proof.
intros; assert (SIM: paco10_2_0 gf_0 gf_1 (r_0 \10/ l) r_1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) by eauto.
clear PR; repeat (try left; do 11 paco_revert; paco_cofix_auto).
Qed.
Theorem paco10_2_1_acc: ∀
l r_0 r_1 (OBG: ∀ rr (INC: r_1 <10= rr) (CIH: l <_paco_10= rr), l <_paco_10= paco10_2_1 gf_0 gf_1 r_0 rr),
l <10= paco10_2_1 gf_0 gf_1 r_0 r_1.
Proof.
intros; assert (SIM: paco10_2_1 gf_0 gf_1 r_0 (r_1 \10/ l) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) by eauto.
clear PR; repeat (try left; do 11 paco_revert; paco_cofix_auto).
Qed.
Theorem paco10_2_0_mon: monotone10_2 (paco10_2_0 gf_0 gf_1).
Proof. paco_cofix_auto; repeat (left; do 11 paco_revert; paco_cofix_auto). Qed.
Theorem paco10_2_1_mon: monotone10_2 (paco10_2_1 gf_0 gf_1).
Proof. paco_cofix_auto; repeat (left; do 11 paco_revert; paco_cofix_auto). Qed.
Theorem paco10_2_0_mult_strong: ∀ r_0 r_1,
paco10_2_0 gf_0 gf_1 (paco10_2_0 gf_0 gf_1 r_0 r_1 \10/ r_0) (paco10_2_1 gf_0 gf_1 r_0 r_1 \10/ r_1) <10= paco10_2_0 gf_0 gf_1 r_0 r_1.
Proof. paco_cofix_auto; repeat (left; do 11 paco_revert; paco_cofix_auto). Qed.
Theorem paco10_2_1_mult_strong: ∀ r_0 r_1,
paco10_2_1 gf_0 gf_1 (paco10_2_0 gf_0 gf_1 r_0 r_1 \10/ r_0) (paco10_2_1 gf_0 gf_1 r_0 r_1 \10/ r_1) <10= paco10_2_1 gf_0 gf_1 r_0 r_1.
Proof. paco_cofix_auto; repeat (left; do 11 paco_revert; paco_cofix_auto). Qed.
Corollary paco10_2_0_mult: ∀ r_0 r_1,
paco10_2_0 gf_0 gf_1 (paco10_2_0 gf_0 gf_1 r_0 r_1) (paco10_2_1 gf_0 gf_1 r_0 r_1) <10= paco10_2_0 gf_0 gf_1 r_0 r_1.
Proof. intros; eapply paco10_2_0_mult_strong, paco10_2_0_mon; eauto. Qed.
Corollary paco10_2_1_mult: ∀ r_0 r_1,
paco10_2_1 gf_0 gf_1 (paco10_2_0 gf_0 gf_1 r_0 r_1) (paco10_2_1 gf_0 gf_1 r_0 r_1) <10= paco10_2_1 gf_0 gf_1 r_0 r_1.
Proof. intros; eapply paco10_2_1_mult_strong, paco10_2_1_mon; eauto. Qed.
Theorem paco10_2_0_fold: ∀ r_0 r_1,
gf_0 (paco10_2_0 gf_0 gf_1 r_0 r_1 \10/ r_0) (paco10_2_1 gf_0 gf_1 r_0 r_1 \10/ r_1) <10= paco10_2_0 gf_0 gf_1 r_0 r_1.
Proof. intros; econstructor; [ | |eauto]; eauto. Qed.
Theorem paco10_2_1_fold: ∀ r_0 r_1,
gf_1 (paco10_2_0 gf_0 gf_1 r_0 r_1 \10/ r_0) (paco10_2_1 gf_0 gf_1 r_0 r_1 \10/ r_1) <10= paco10_2_1 gf_0 gf_1 r_0 r_1.
Proof. intros; econstructor; [ | |eauto]; eauto. Qed.
Theorem paco10_2_0_unfold: ∀ (MON: monotone10_2 gf_0) (MON: monotone10_2 gf_1) r_0 r_1,
paco10_2_0 gf_0 gf_1 r_0 r_1 <10= gf_0 (paco10_2_0 gf_0 gf_1 r_0 r_1 \10/ r_0) (paco10_2_1 gf_0 gf_1 r_0 r_1 \10/ r_1).
Proof. unfold monotone10_2; intros; destruct PR; eauto. Qed.
Theorem paco10_2_1_unfold: ∀ (MON: monotone10_2 gf_0) (MON: monotone10_2 gf_1) r_0 r_1,
paco10_2_1 gf_0 gf_1 r_0 r_1 <10= gf_1 (paco10_2_0 gf_0 gf_1 r_0 r_1 \10/ r_0) (paco10_2_1 gf_0 gf_1 r_0 r_1 \10/ r_1).
Proof. unfold monotone10_2; intros; destruct PR; eauto. Qed.
End Arg10_2.
Hint Unfold monotone10_2.
Hint Resolve paco10_2_0_fold.
Hint Resolve paco10_2_1_fold.
Implicit Arguments paco10_2_0_acc [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_2_1_acc [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_2_0_mon [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_2_1_mon [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_2_0_mult_strong [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_2_1_mult_strong [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_2_0_mult [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_2_1_mult [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_2_0_fold [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_2_1_fold [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_2_0_unfold [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_2_1_unfold [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Instance paco10_2_0_inst T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 (gf_0 gf_1 : rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9→_) r_0 r_1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : paco_class (paco10_2_0 gf_0 gf_1 r_0 r_1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) :=
{ pacoacc := paco10_2_0_acc gf_0 gf_1;
pacomult := paco10_2_0_mult gf_0 gf_1;
pacofold := paco10_2_0_fold gf_0 gf_1;
pacounfold := paco10_2_0_unfold gf_0 gf_1 }.
Instance paco10_2_1_inst T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 (gf_0 gf_1 : rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9→_) r_0 r_1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : paco_class (paco10_2_1 gf_0 gf_1 r_0 r_1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) :=
{ pacoacc := paco10_2_1_acc gf_0 gf_1;
pacomult := paco10_2_1_mult gf_0 gf_1;
pacofold := paco10_2_1_fold gf_0 gf_1;
pacounfold := paco10_2_1_unfold gf_0 gf_1 }.
3 Mutual Coinduction
Section Arg10_3.
Definition monotone10_3 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 (gf: rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 → rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 → rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 → rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9) :=
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 r_0 r_1 r_2 r´_0 r´_1 r´_2 (IN: gf r_0 r_1 r_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) (LE_0: r_0 <10= r´_0)(LE_1: r_1 <10= r´_1)(LE_2: r_2 <10= r´_2), gf r´_0 r´_1 r´_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9.
Variable T0 : Type.
Variable T1 : ∀ (x0: @T0), Type.
Variable T2 : ∀ (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable T6 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4), Type.
Variable T7 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5), Type.
Variable T8 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6), Type.
Variable T9 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3) (x5: @T5 x0 x1 x2 x3 x4) (x6: @T6 x0 x1 x2 x3 x4 x5) (x7: @T7 x0 x1 x2 x3 x4 x5 x6) (x8: @T8 x0 x1 x2 x3 x4 x5 x6 x7), Type.
Variable gf_0 gf_1 gf_2 : rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 → rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 → rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 → rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].
Theorem paco10_3_0_acc: ∀
l r_0 r_1 r_2 (OBG: ∀ rr (INC: r_0 <10= rr) (CIH: l <_paco_10= rr), l <_paco_10= paco10_3_0 gf_0 gf_1 gf_2 rr r_1 r_2),
l <10= paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof.
intros; assert (SIM: paco10_3_0 gf_0 gf_1 gf_2 (r_0 \10/ l) r_1 r_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) by eauto.
clear PR; repeat (try left; do 11 paco_revert; paco_cofix_auto).
Qed.
Theorem paco10_3_1_acc: ∀
l r_0 r_1 r_2 (OBG: ∀ rr (INC: r_1 <10= rr) (CIH: l <_paco_10= rr), l <_paco_10= paco10_3_1 gf_0 gf_1 gf_2 r_0 rr r_2),
l <10= paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof.
intros; assert (SIM: paco10_3_1 gf_0 gf_1 gf_2 r_0 (r_1 \10/ l) r_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) by eauto.
clear PR; repeat (try left; do 11 paco_revert; paco_cofix_auto).
Qed.
Theorem paco10_3_2_acc: ∀
l r_0 r_1 r_2 (OBG: ∀ rr (INC: r_2 <10= rr) (CIH: l <_paco_10= rr), l <_paco_10= paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 rr),
l <10= paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof.
intros; assert (SIM: paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 (r_2 \10/ l) x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) by eauto.
clear PR; repeat (try left; do 11 paco_revert; paco_cofix_auto).
Qed.
Theorem paco10_3_0_mon: monotone10_3 (paco10_3_0 gf_0 gf_1 gf_2).
Proof. paco_cofix_auto; repeat (left; do 11 paco_revert; paco_cofix_auto). Qed.
Theorem paco10_3_1_mon: monotone10_3 (paco10_3_1 gf_0 gf_1 gf_2).
Proof. paco_cofix_auto; repeat (left; do 11 paco_revert; paco_cofix_auto). Qed.
Theorem paco10_3_2_mon: monotone10_3 (paco10_3_2 gf_0 gf_1 gf_2).
Proof. paco_cofix_auto; repeat (left; do 11 paco_revert; paco_cofix_auto). Qed.
Theorem paco10_3_0_mult_strong: ∀ r_0 r_1 r_2,
paco10_3_0 gf_0 gf_1 gf_2 (paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_0) (paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_1) (paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_2) <10= paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. paco_cofix_auto; repeat (left; do 11 paco_revert; paco_cofix_auto). Qed.
Theorem paco10_3_1_mult_strong: ∀ r_0 r_1 r_2,
paco10_3_1 gf_0 gf_1 gf_2 (paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_0) (paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_1) (paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_2) <10= paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. paco_cofix_auto; repeat (left; do 11 paco_revert; paco_cofix_auto). Qed.
Theorem paco10_3_2_mult_strong: ∀ r_0 r_1 r_2,
paco10_3_2 gf_0 gf_1 gf_2 (paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_0) (paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_1) (paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_2) <10= paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. paco_cofix_auto; repeat (left; do 11 paco_revert; paco_cofix_auto). Qed.
Corollary paco10_3_0_mult: ∀ r_0 r_1 r_2,
paco10_3_0 gf_0 gf_1 gf_2 (paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2) (paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2) (paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2) <10= paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. intros; eapply paco10_3_0_mult_strong, paco10_3_0_mon; eauto. Qed.
Corollary paco10_3_1_mult: ∀ r_0 r_1 r_2,
paco10_3_1 gf_0 gf_1 gf_2 (paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2) (paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2) (paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2) <10= paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. intros; eapply paco10_3_1_mult_strong, paco10_3_1_mon; eauto. Qed.
Corollary paco10_3_2_mult: ∀ r_0 r_1 r_2,
paco10_3_2 gf_0 gf_1 gf_2 (paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2) (paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2) (paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2) <10= paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. intros; eapply paco10_3_2_mult_strong, paco10_3_2_mon; eauto. Qed.
Theorem paco10_3_0_fold: ∀ r_0 r_1 r_2,
gf_0 (paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_0) (paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_1) (paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_2) <10= paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. intros; econstructor; [ | | |eauto]; eauto. Qed.
Theorem paco10_3_1_fold: ∀ r_0 r_1 r_2,
gf_1 (paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_0) (paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_1) (paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_2) <10= paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. intros; econstructor; [ | | |eauto]; eauto. Qed.
Theorem paco10_3_2_fold: ∀ r_0 r_1 r_2,
gf_2 (paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_0) (paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_1) (paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_2) <10= paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. intros; econstructor; [ | | |eauto]; eauto. Qed.
Theorem paco10_3_0_unfold: ∀ (MON: monotone10_3 gf_0) (MON: monotone10_3 gf_1) (MON: monotone10_3 gf_2) r_0 r_1 r_2,
paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 <10= gf_0 (paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_0) (paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_1) (paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_2).
Proof. unfold monotone10_3; intros; destruct PR; eauto. Qed.
Theorem paco10_3_1_unfold: ∀ (MON: monotone10_3 gf_0) (MON: monotone10_3 gf_1) (MON: monotone10_3 gf_2) r_0 r_1 r_2,
paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 <10= gf_1 (paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_0) (paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_1) (paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_2).
Proof. unfold monotone10_3; intros; destruct PR; eauto. Qed.
Theorem paco10_3_2_unfold: ∀ (MON: monotone10_3 gf_0) (MON: monotone10_3 gf_1) (MON: monotone10_3 gf_2) r_0 r_1 r_2,
paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 <10= gf_2 (paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_0) (paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_1) (paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \10/ r_2).
Proof. unfold monotone10_3; intros; destruct PR; eauto. Qed.
End Arg10_3.
Hint Unfold monotone10_3.
Hint Resolve paco10_3_0_fold.
Hint Resolve paco10_3_1_fold.
Hint Resolve paco10_3_2_fold.
Implicit Arguments paco10_3_0_acc [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_1_acc [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_2_acc [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_0_mon [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_1_mon [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_2_mon [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_0_mult_strong [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_1_mult_strong [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_2_mult_strong [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_0_mult [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_1_mult [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_2_mult [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_0_fold [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_1_fold [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_2_fold [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_0_unfold [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_1_unfold [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Implicit Arguments paco10_3_2_unfold [ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 ].
Instance paco10_3_0_inst T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 (gf_0 gf_1 gf_2 : rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9→_) r_0 r_1 r_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : paco_class (paco10_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) :=
{ pacoacc := paco10_3_0_acc gf_0 gf_1 gf_2;
pacomult := paco10_3_0_mult gf_0 gf_1 gf_2;
pacofold := paco10_3_0_fold gf_0 gf_1 gf_2;
pacounfold := paco10_3_0_unfold gf_0 gf_1 gf_2 }.
Instance paco10_3_1_inst T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 (gf_0 gf_1 gf_2 : rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9→_) r_0 r_1 r_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : paco_class (paco10_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) :=
{ pacoacc := paco10_3_1_acc gf_0 gf_1 gf_2;
pacomult := paco10_3_1_mult gf_0 gf_1 gf_2;
pacofold := paco10_3_1_fold gf_0 gf_1 gf_2;
pacounfold := paco10_3_1_unfold gf_0 gf_1 gf_2 }.
Instance paco10_3_2_inst T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 (gf_0 gf_1 gf_2 : rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9→_) r_0 r_1 r_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : paco_class (paco10_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) :=
{ pacoacc := paco10_3_2_acc gf_0 gf_1 gf_2;
pacomult := paco10_3_2_mult gf_0 gf_1 gf_2;
pacofold := paco10_3_2_fold gf_0 gf_1 gf_2;
pacounfold := paco10_3_2_unfold gf_0 gf_1 gf_2 }.