Lvc.paco.paco6
Section Arg6_1.
Definition monotone6 T0 T1 T2 T3 T4 T5 (gf: rel6 T0 T1 T2 T3 T4 T5 → rel6 T0 T1 T2 T3 T4 T5) :=
∀ x0 x1 x2 x3 x4 x5 r r´ (IN: gf r x0 x1 x2 x3 x4 x5) (LE: r <6= r´), gf r´ x0 x1 x2 x3 x4 x5.
Variable T0 : Type.
Variable T1 : ∀ (x0: @T0), Type.
Variable T2 : ∀ (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable gf : rel6 T0 T1 T2 T3 T4 T5 → rel6 T0 T1 T2 T3 T4 T5.
Implicit Arguments gf [].
Theorem paco6_acc: ∀
l r (OBG: ∀ rr (INC: r <6= rr) (CIH: l <_paco_6= rr), l <_paco_6= paco6 gf rr),
l <6= paco6 gf r.
Proof.
intros; assert (SIM: paco6 gf (r \6/ l) x0 x1 x2 x3 x4 x5) by eauto.
clear PR; repeat (try left; do 7 paco_revert; paco_cofix_auto).
Qed.
Theorem paco6_mon: monotone6 (paco6 gf).
Proof. paco_cofix_auto; repeat (left; do 7 paco_revert; paco_cofix_auto). Qed.
Theorem paco6_mult_strong: ∀ r,
paco6 gf (paco6 gf r \6/ r) <6= paco6 gf r.
Proof. paco_cofix_auto; repeat (left; do 7 paco_revert; paco_cofix_auto). Qed.
Corollary paco6_mult: ∀ r,
paco6 gf (paco6 gf r) <6= paco6 gf r.
Proof. intros; eapply paco6_mult_strong, paco6_mon; eauto. Qed.
Theorem paco6_fold: ∀ r,
gf (paco6 gf r \6/ r) <6= paco6 gf r.
Proof. intros; econstructor; [ |eauto]; eauto. Qed.
Theorem paco6_unfold: ∀ (MON: monotone6 gf) r,
paco6 gf r <6= gf (paco6 gf r \6/ r).
Proof. unfold monotone6; intros; destruct PR; eauto. Qed.
End Arg6_1.
Hint Unfold monotone6.
Hint Resolve paco6_fold.
Implicit Arguments paco6_acc [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_mon [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_mult_strong [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_mult [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_fold [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_unfold [ T0 T1 T2 T3 T4 T5 ].
Instance paco6_inst T0 T1 T2 T3 T4 T5 (gf : rel6 T0 T1 T2 T3 T4 T5→_) r x0 x1 x2 x3 x4 x5 : paco_class (paco6 gf r x0 x1 x2 x3 x4 x5) :=
{ pacoacc := paco6_acc gf;
pacomult := paco6_mult gf;
pacofold := paco6_fold gf;
pacounfold := paco6_unfold gf }.
2 Mutual Coinduction
Section Arg6_2.
Definition monotone6_2 T0 T1 T2 T3 T4 T5 (gf: rel6 T0 T1 T2 T3 T4 T5 → rel6 T0 T1 T2 T3 T4 T5 → rel6 T0 T1 T2 T3 T4 T5) :=
∀ x0 x1 x2 x3 x4 x5 r_0 r_1 r´_0 r´_1 (IN: gf r_0 r_1 x0 x1 x2 x3 x4 x5) (LE_0: r_0 <6= r´_0)(LE_1: r_1 <6= r´_1), gf r´_0 r´_1 x0 x1 x2 x3 x4 x5.
Variable T0 : Type.
Variable T1 : ∀ (x0: @T0), Type.
Variable T2 : ∀ (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable gf_0 gf_1 : rel6 T0 T1 T2 T3 T4 T5 → rel6 T0 T1 T2 T3 T4 T5 → rel6 T0 T1 T2 T3 T4 T5.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Theorem paco6_2_0_acc: ∀
l r_0 r_1 (OBG: ∀ rr (INC: r_0 <6= rr) (CIH: l <_paco_6= rr), l <_paco_6= paco6_2_0 gf_0 gf_1 rr r_1),
l <6= paco6_2_0 gf_0 gf_1 r_0 r_1.
Proof.
intros; assert (SIM: paco6_2_0 gf_0 gf_1 (r_0 \6/ l) r_1 x0 x1 x2 x3 x4 x5) by eauto.
clear PR; repeat (try left; do 7 paco_revert; paco_cofix_auto).
Qed.
Theorem paco6_2_1_acc: ∀
l r_0 r_1 (OBG: ∀ rr (INC: r_1 <6= rr) (CIH: l <_paco_6= rr), l <_paco_6= paco6_2_1 gf_0 gf_1 r_0 rr),
l <6= paco6_2_1 gf_0 gf_1 r_0 r_1.
Proof.
intros; assert (SIM: paco6_2_1 gf_0 gf_1 r_0 (r_1 \6/ l) x0 x1 x2 x3 x4 x5) by eauto.
clear PR; repeat (try left; do 7 paco_revert; paco_cofix_auto).
Qed.
Theorem paco6_2_0_mon: monotone6_2 (paco6_2_0 gf_0 gf_1).
Proof. paco_cofix_auto; repeat (left; do 7 paco_revert; paco_cofix_auto). Qed.
Theorem paco6_2_1_mon: monotone6_2 (paco6_2_1 gf_0 gf_1).
Proof. paco_cofix_auto; repeat (left; do 7 paco_revert; paco_cofix_auto). Qed.
Theorem paco6_2_0_mult_strong: ∀ r_0 r_1,
paco6_2_0 gf_0 gf_1 (paco6_2_0 gf_0 gf_1 r_0 r_1 \6/ r_0) (paco6_2_1 gf_0 gf_1 r_0 r_1 \6/ r_1) <6= paco6_2_0 gf_0 gf_1 r_0 r_1.
Proof. paco_cofix_auto; repeat (left; do 7 paco_revert; paco_cofix_auto). Qed.
Theorem paco6_2_1_mult_strong: ∀ r_0 r_1,
paco6_2_1 gf_0 gf_1 (paco6_2_0 gf_0 gf_1 r_0 r_1 \6/ r_0) (paco6_2_1 gf_0 gf_1 r_0 r_1 \6/ r_1) <6= paco6_2_1 gf_0 gf_1 r_0 r_1.
Proof. paco_cofix_auto; repeat (left; do 7 paco_revert; paco_cofix_auto). Qed.
Corollary paco6_2_0_mult: ∀ r_0 r_1,
paco6_2_0 gf_0 gf_1 (paco6_2_0 gf_0 gf_1 r_0 r_1) (paco6_2_1 gf_0 gf_1 r_0 r_1) <6= paco6_2_0 gf_0 gf_1 r_0 r_1.
Proof. intros; eapply paco6_2_0_mult_strong, paco6_2_0_mon; eauto. Qed.
Corollary paco6_2_1_mult: ∀ r_0 r_1,
paco6_2_1 gf_0 gf_1 (paco6_2_0 gf_0 gf_1 r_0 r_1) (paco6_2_1 gf_0 gf_1 r_0 r_1) <6= paco6_2_1 gf_0 gf_1 r_0 r_1.
Proof. intros; eapply paco6_2_1_mult_strong, paco6_2_1_mon; eauto. Qed.
Theorem paco6_2_0_fold: ∀ r_0 r_1,
gf_0 (paco6_2_0 gf_0 gf_1 r_0 r_1 \6/ r_0) (paco6_2_1 gf_0 gf_1 r_0 r_1 \6/ r_1) <6= paco6_2_0 gf_0 gf_1 r_0 r_1.
Proof. intros; econstructor; [ | |eauto]; eauto. Qed.
Theorem paco6_2_1_fold: ∀ r_0 r_1,
gf_1 (paco6_2_0 gf_0 gf_1 r_0 r_1 \6/ r_0) (paco6_2_1 gf_0 gf_1 r_0 r_1 \6/ r_1) <6= paco6_2_1 gf_0 gf_1 r_0 r_1.
Proof. intros; econstructor; [ | |eauto]; eauto. Qed.
Theorem paco6_2_0_unfold: ∀ (MON: monotone6_2 gf_0) (MON: monotone6_2 gf_1) r_0 r_1,
paco6_2_0 gf_0 gf_1 r_0 r_1 <6= gf_0 (paco6_2_0 gf_0 gf_1 r_0 r_1 \6/ r_0) (paco6_2_1 gf_0 gf_1 r_0 r_1 \6/ r_1).
Proof. unfold monotone6_2; intros; destruct PR; eauto. Qed.
Theorem paco6_2_1_unfold: ∀ (MON: monotone6_2 gf_0) (MON: monotone6_2 gf_1) r_0 r_1,
paco6_2_1 gf_0 gf_1 r_0 r_1 <6= gf_1 (paco6_2_0 gf_0 gf_1 r_0 r_1 \6/ r_0) (paco6_2_1 gf_0 gf_1 r_0 r_1 \6/ r_1).
Proof. unfold monotone6_2; intros; destruct PR; eauto. Qed.
End Arg6_2.
Hint Unfold monotone6_2.
Hint Resolve paco6_2_0_fold.
Hint Resolve paco6_2_1_fold.
Implicit Arguments paco6_2_0_acc [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_2_1_acc [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_2_0_mon [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_2_1_mon [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_2_0_mult_strong [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_2_1_mult_strong [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_2_0_mult [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_2_1_mult [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_2_0_fold [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_2_1_fold [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_2_0_unfold [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_2_1_unfold [ T0 T1 T2 T3 T4 T5 ].
Instance paco6_2_0_inst T0 T1 T2 T3 T4 T5 (gf_0 gf_1 : rel6 T0 T1 T2 T3 T4 T5→_) r_0 r_1 x0 x1 x2 x3 x4 x5 : paco_class (paco6_2_0 gf_0 gf_1 r_0 r_1 x0 x1 x2 x3 x4 x5) :=
{ pacoacc := paco6_2_0_acc gf_0 gf_1;
pacomult := paco6_2_0_mult gf_0 gf_1;
pacofold := paco6_2_0_fold gf_0 gf_1;
pacounfold := paco6_2_0_unfold gf_0 gf_1 }.
Instance paco6_2_1_inst T0 T1 T2 T3 T4 T5 (gf_0 gf_1 : rel6 T0 T1 T2 T3 T4 T5→_) r_0 r_1 x0 x1 x2 x3 x4 x5 : paco_class (paco6_2_1 gf_0 gf_1 r_0 r_1 x0 x1 x2 x3 x4 x5) :=
{ pacoacc := paco6_2_1_acc gf_0 gf_1;
pacomult := paco6_2_1_mult gf_0 gf_1;
pacofold := paco6_2_1_fold gf_0 gf_1;
pacounfold := paco6_2_1_unfold gf_0 gf_1 }.
3 Mutual Coinduction
Section Arg6_3.
Definition monotone6_3 T0 T1 T2 T3 T4 T5 (gf: rel6 T0 T1 T2 T3 T4 T5 → rel6 T0 T1 T2 T3 T4 T5 → rel6 T0 T1 T2 T3 T4 T5 → rel6 T0 T1 T2 T3 T4 T5) :=
∀ x0 x1 x2 x3 x4 x5 r_0 r_1 r_2 r´_0 r´_1 r´_2 (IN: gf r_0 r_1 r_2 x0 x1 x2 x3 x4 x5) (LE_0: r_0 <6= r´_0)(LE_1: r_1 <6= r´_1)(LE_2: r_2 <6= r´_2), gf r´_0 r´_1 r´_2 x0 x1 x2 x3 x4 x5.
Variable T0 : Type.
Variable T1 : ∀ (x0: @T0), Type.
Variable T2 : ∀ (x0: @T0) (x1: @T1 x0), Type.
Variable T3 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1), Type.
Variable T4 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2), Type.
Variable T5 : ∀ (x0: @T0) (x1: @T1 x0) (x2: @T2 x0 x1) (x3: @T3 x0 x1 x2) (x4: @T4 x0 x1 x2 x3), Type.
Variable gf_0 gf_1 gf_2 : rel6 T0 T1 T2 T3 T4 T5 → rel6 T0 T1 T2 T3 T4 T5 → rel6 T0 T1 T2 T3 T4 T5 → rel6 T0 T1 T2 T3 T4 T5.
Implicit Arguments gf_0 [].
Implicit Arguments gf_1 [].
Implicit Arguments gf_2 [].
Theorem paco6_3_0_acc: ∀
l r_0 r_1 r_2 (OBG: ∀ rr (INC: r_0 <6= rr) (CIH: l <_paco_6= rr), l <_paco_6= paco6_3_0 gf_0 gf_1 gf_2 rr r_1 r_2),
l <6= paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof.
intros; assert (SIM: paco6_3_0 gf_0 gf_1 gf_2 (r_0 \6/ l) r_1 r_2 x0 x1 x2 x3 x4 x5) by eauto.
clear PR; repeat (try left; do 7 paco_revert; paco_cofix_auto).
Qed.
Theorem paco6_3_1_acc: ∀
l r_0 r_1 r_2 (OBG: ∀ rr (INC: r_1 <6= rr) (CIH: l <_paco_6= rr), l <_paco_6= paco6_3_1 gf_0 gf_1 gf_2 r_0 rr r_2),
l <6= paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof.
intros; assert (SIM: paco6_3_1 gf_0 gf_1 gf_2 r_0 (r_1 \6/ l) r_2 x0 x1 x2 x3 x4 x5) by eauto.
clear PR; repeat (try left; do 7 paco_revert; paco_cofix_auto).
Qed.
Theorem paco6_3_2_acc: ∀
l r_0 r_1 r_2 (OBG: ∀ rr (INC: r_2 <6= rr) (CIH: l <_paco_6= rr), l <_paco_6= paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 rr),
l <6= paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof.
intros; assert (SIM: paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 (r_2 \6/ l) x0 x1 x2 x3 x4 x5) by eauto.
clear PR; repeat (try left; do 7 paco_revert; paco_cofix_auto).
Qed.
Theorem paco6_3_0_mon: monotone6_3 (paco6_3_0 gf_0 gf_1 gf_2).
Proof. paco_cofix_auto; repeat (left; do 7 paco_revert; paco_cofix_auto). Qed.
Theorem paco6_3_1_mon: monotone6_3 (paco6_3_1 gf_0 gf_1 gf_2).
Proof. paco_cofix_auto; repeat (left; do 7 paco_revert; paco_cofix_auto). Qed.
Theorem paco6_3_2_mon: monotone6_3 (paco6_3_2 gf_0 gf_1 gf_2).
Proof. paco_cofix_auto; repeat (left; do 7 paco_revert; paco_cofix_auto). Qed.
Theorem paco6_3_0_mult_strong: ∀ r_0 r_1 r_2,
paco6_3_0 gf_0 gf_1 gf_2 (paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_0) (paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_1) (paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_2) <6= paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. paco_cofix_auto; repeat (left; do 7 paco_revert; paco_cofix_auto). Qed.
Theorem paco6_3_1_mult_strong: ∀ r_0 r_1 r_2,
paco6_3_1 gf_0 gf_1 gf_2 (paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_0) (paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_1) (paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_2) <6= paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. paco_cofix_auto; repeat (left; do 7 paco_revert; paco_cofix_auto). Qed.
Theorem paco6_3_2_mult_strong: ∀ r_0 r_1 r_2,
paco6_3_2 gf_0 gf_1 gf_2 (paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_0) (paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_1) (paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_2) <6= paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. paco_cofix_auto; repeat (left; do 7 paco_revert; paco_cofix_auto). Qed.
Corollary paco6_3_0_mult: ∀ r_0 r_1 r_2,
paco6_3_0 gf_0 gf_1 gf_2 (paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2) (paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2) (paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2) <6= paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. intros; eapply paco6_3_0_mult_strong, paco6_3_0_mon; eauto. Qed.
Corollary paco6_3_1_mult: ∀ r_0 r_1 r_2,
paco6_3_1 gf_0 gf_1 gf_2 (paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2) (paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2) (paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2) <6= paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. intros; eapply paco6_3_1_mult_strong, paco6_3_1_mon; eauto. Qed.
Corollary paco6_3_2_mult: ∀ r_0 r_1 r_2,
paco6_3_2 gf_0 gf_1 gf_2 (paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2) (paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2) (paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2) <6= paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. intros; eapply paco6_3_2_mult_strong, paco6_3_2_mon; eauto. Qed.
Theorem paco6_3_0_fold: ∀ r_0 r_1 r_2,
gf_0 (paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_0) (paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_1) (paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_2) <6= paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. intros; econstructor; [ | | |eauto]; eauto. Qed.
Theorem paco6_3_1_fold: ∀ r_0 r_1 r_2,
gf_1 (paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_0) (paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_1) (paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_2) <6= paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. intros; econstructor; [ | | |eauto]; eauto. Qed.
Theorem paco6_3_2_fold: ∀ r_0 r_1 r_2,
gf_2 (paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_0) (paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_1) (paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_2) <6= paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2.
Proof. intros; econstructor; [ | | |eauto]; eauto. Qed.
Theorem paco6_3_0_unfold: ∀ (MON: monotone6_3 gf_0) (MON: monotone6_3 gf_1) (MON: monotone6_3 gf_2) r_0 r_1 r_2,
paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 <6= gf_0 (paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_0) (paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_1) (paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_2).
Proof. unfold monotone6_3; intros; destruct PR; eauto. Qed.
Theorem paco6_3_1_unfold: ∀ (MON: monotone6_3 gf_0) (MON: monotone6_3 gf_1) (MON: monotone6_3 gf_2) r_0 r_1 r_2,
paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 <6= gf_1 (paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_0) (paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_1) (paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_2).
Proof. unfold monotone6_3; intros; destruct PR; eauto. Qed.
Theorem paco6_3_2_unfold: ∀ (MON: monotone6_3 gf_0) (MON: monotone6_3 gf_1) (MON: monotone6_3 gf_2) r_0 r_1 r_2,
paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 <6= gf_2 (paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_0) (paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_1) (paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 \6/ r_2).
Proof. unfold monotone6_3; intros; destruct PR; eauto. Qed.
End Arg6_3.
Hint Unfold monotone6_3.
Hint Resolve paco6_3_0_fold.
Hint Resolve paco6_3_1_fold.
Hint Resolve paco6_3_2_fold.
Implicit Arguments paco6_3_0_acc [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_1_acc [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_2_acc [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_0_mon [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_1_mon [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_2_mon [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_0_mult_strong [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_1_mult_strong [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_2_mult_strong [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_0_mult [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_1_mult [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_2_mult [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_0_fold [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_1_fold [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_2_fold [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_0_unfold [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_1_unfold [ T0 T1 T2 T3 T4 T5 ].
Implicit Arguments paco6_3_2_unfold [ T0 T1 T2 T3 T4 T5 ].
Instance paco6_3_0_inst T0 T1 T2 T3 T4 T5 (gf_0 gf_1 gf_2 : rel6 T0 T1 T2 T3 T4 T5→_) r_0 r_1 r_2 x0 x1 x2 x3 x4 x5 : paco_class (paco6_3_0 gf_0 gf_1 gf_2 r_0 r_1 r_2 x0 x1 x2 x3 x4 x5) :=
{ pacoacc := paco6_3_0_acc gf_0 gf_1 gf_2;
pacomult := paco6_3_0_mult gf_0 gf_1 gf_2;
pacofold := paco6_3_0_fold gf_0 gf_1 gf_2;
pacounfold := paco6_3_0_unfold gf_0 gf_1 gf_2 }.
Instance paco6_3_1_inst T0 T1 T2 T3 T4 T5 (gf_0 gf_1 gf_2 : rel6 T0 T1 T2 T3 T4 T5→_) r_0 r_1 r_2 x0 x1 x2 x3 x4 x5 : paco_class (paco6_3_1 gf_0 gf_1 gf_2 r_0 r_1 r_2 x0 x1 x2 x3 x4 x5) :=
{ pacoacc := paco6_3_1_acc gf_0 gf_1 gf_2;
pacomult := paco6_3_1_mult gf_0 gf_1 gf_2;
pacofold := paco6_3_1_fold gf_0 gf_1 gf_2;
pacounfold := paco6_3_1_unfold gf_0 gf_1 gf_2 }.
Instance paco6_3_2_inst T0 T1 T2 T3 T4 T5 (gf_0 gf_1 gf_2 : rel6 T0 T1 T2 T3 T4 T5→_) r_0 r_1 r_2 x0 x1 x2 x3 x4 x5 : paco_class (paco6_3_2 gf_0 gf_1 gf_2 r_0 r_1 r_2 x0 x1 x2 x3 x4 x5) :=
{ pacoacc := paco6_3_2_acc gf_0 gf_1 gf_2;
pacomult := paco6_3_2_mult gf_0 gf_1 gf_2;
pacofold := paco6_3_2_fold gf_0 gf_1 gf_2;
pacounfold := paco6_3_2_unfold gf_0 gf_1 gf_2 }.