Lvc.Constr.MapLookup
Require Export Setoid Coq.Classes.Morphisms.
Require Import EqDec Computable Util AutoIndTac.
Require Export CSet Containers.SetDecide.
Require Export MapBasics.
Set Implicit Arguments.
Section MapLookup.
Open Scope fmap_scope.
Variable X : Type.
Context `{OrderedType X}.
Variable Y : Type.
Definition lookup_set `{OrderedType Y} (m:X → Y) (s:set X) : set Y :=
SetConstructs.map m s.
Lemma lookup_set_spec `{OrderedType Y} (m:X → Y) s y `{Proper _ (_eq ==> _eq) m}
: y ∈ lookup_set m s ↔ ∃ x, x ∈ s ∧ y === m x.
Lemma lookup_set_helper `{OrderedType Y} (m:X → Y) s x `{Proper _ (_eq ==> _eq) m}
: x ∈ s → m x ∈ lookup_set m s.
Lemma lookup_set_incl `{OrderedType Y} s t (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: s ⊆ t → (lookup_set m s) ⊆ (lookup_set m t).
Lemma lookup_set_union `{OrderedType Y} s t (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: (lookup_set m (s ∪ t)) [=] (lookup_set m s ∪ lookup_set m t).
Lemma lookup_set_minus_incl `{OrderedType Y}
(s t:set X) (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: lookup_set m s \ (lookup_set m t) ⊆ lookup_set m (s \ t).
End MapLookup.
Lemma lookup_set_on_id {X} `{OrderedType X} (s t : set X)
: s ⊆ t → (lookup_set (fun x ⇒ x) s) ⊆ t.
Global Instance lookup_set_morphism {X} `{OrderedType X} {Y} `{OrderedType Y} {f:X→Y}
`{Proper _ (_eq ==> _eq) f}
: Proper (Subset ==> Subset) (lookup_set f).
Global Instance lookup_set_morphism_eq {X} `{OrderedType X} {Y} `{OrderedType Y} {f:X→Y}
`{Proper _ (_eq ==> _eq) f}
: Proper (Equal ==> Equal) (lookup_set f).
Lemma lookup_set_singleton {X} `{OrderedType X} {Y} `{OrderedType Y} (f:X→Y)
`{Proper _ (_eq ==> _eq) f} x
: lookup_set f {{x}} [=] {{f x}}.
Lemma lookup_set_singleton´ {X} `{OrderedType X} {Y} `{OrderedType Y} (f:X→Y)
`{Proper _ (_eq ==> _eq) f} x
: lookup_set f (singleton x) [=] singleton (f x).
Lemma lookup_set_single X `{OrderedType X} Y `{OrderedType Y} (ϱ:X→Y)
`{Proper _ (_eq ==> _eq) ϱ} D D´ v
: v ∈ D
→ lookup_set ϱ D ⊆ D´
→ {{ ϱ v }} ⊆ D´.
Lemma lookup_set_add X `{OrderedType X} Y `{OrderedType Y} x s (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: (lookup_set m {x; s}) [=] {m x; lookup_set m s}.
Ltac set_tac :=
repeat cset_tac;
match goal with
| [ H : context [ In ?y (lookup_set ?f ?s) ] |- _ ] ⇒
rewrite (@lookup_set_spec _ _ _ _ f s y) in H
| [ |- context [ In ?y (lookup_set ?f ?s) ]] ⇒
rewrite (@lookup_set_spec _ _ _ _ f s y)
end.
Lemma lookup_set_empty X `{OrderedType X} Y `{OrderedType Y} (ϱ:X→Y)
`{Proper _ (_eq ==> _eq) ϱ}
: lookup_set ϱ {} [=] {}.
Hint Extern 20 (lookup_set ?ϱ {} [=] {}) ⇒ eapply lookup_set_empty; eauto.
Hint Extern 20 ({} [=] lookup_set ?ϱ {}) ⇒ symmetry; eapply lookup_set_empty; eauto.
Hint Extern 20 (lookup_set ?ϱ (singleton ?v) [=] singleton (?ϱ ?v)) ⇒ eapply lookup_set_singleton´; eauto.
Hint Extern 20 (singleton (?ϱ ?v) [=] lookup_set ?ϱ (singleton ?v)) ⇒ symmetry; eapply lookup_set_singleton´; eauto.
Require Import EqDec Computable Util AutoIndTac.
Require Export CSet Containers.SetDecide.
Require Export MapBasics.
Set Implicit Arguments.
Section MapLookup.
Open Scope fmap_scope.
Variable X : Type.
Context `{OrderedType X}.
Variable Y : Type.
Definition lookup_set `{OrderedType Y} (m:X → Y) (s:set X) : set Y :=
SetConstructs.map m s.
Lemma lookup_set_spec `{OrderedType Y} (m:X → Y) s y `{Proper _ (_eq ==> _eq) m}
: y ∈ lookup_set m s ↔ ∃ x, x ∈ s ∧ y === m x.
Lemma lookup_set_helper `{OrderedType Y} (m:X → Y) s x `{Proper _ (_eq ==> _eq) m}
: x ∈ s → m x ∈ lookup_set m s.
Lemma lookup_set_incl `{OrderedType Y} s t (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: s ⊆ t → (lookup_set m s) ⊆ (lookup_set m t).
Lemma lookup_set_union `{OrderedType Y} s t (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: (lookup_set m (s ∪ t)) [=] (lookup_set m s ∪ lookup_set m t).
Lemma lookup_set_minus_incl `{OrderedType Y}
(s t:set X) (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: lookup_set m s \ (lookup_set m t) ⊆ lookup_set m (s \ t).
End MapLookup.
Lemma lookup_set_on_id {X} `{OrderedType X} (s t : set X)
: s ⊆ t → (lookup_set (fun x ⇒ x) s) ⊆ t.
Global Instance lookup_set_morphism {X} `{OrderedType X} {Y} `{OrderedType Y} {f:X→Y}
`{Proper _ (_eq ==> _eq) f}
: Proper (Subset ==> Subset) (lookup_set f).
Global Instance lookup_set_morphism_eq {X} `{OrderedType X} {Y} `{OrderedType Y} {f:X→Y}
`{Proper _ (_eq ==> _eq) f}
: Proper (Equal ==> Equal) (lookup_set f).
Lemma lookup_set_singleton {X} `{OrderedType X} {Y} `{OrderedType Y} (f:X→Y)
`{Proper _ (_eq ==> _eq) f} x
: lookup_set f {{x}} [=] {{f x}}.
Lemma lookup_set_singleton´ {X} `{OrderedType X} {Y} `{OrderedType Y} (f:X→Y)
`{Proper _ (_eq ==> _eq) f} x
: lookup_set f (singleton x) [=] singleton (f x).
Lemma lookup_set_single X `{OrderedType X} Y `{OrderedType Y} (ϱ:X→Y)
`{Proper _ (_eq ==> _eq) ϱ} D D´ v
: v ∈ D
→ lookup_set ϱ D ⊆ D´
→ {{ ϱ v }} ⊆ D´.
Lemma lookup_set_add X `{OrderedType X} Y `{OrderedType Y} x s (m:X → Y) `{Proper _ (_eq ==> _eq) m}
: (lookup_set m {x; s}) [=] {m x; lookup_set m s}.
Ltac set_tac :=
repeat cset_tac;
match goal with
| [ H : context [ In ?y (lookup_set ?f ?s) ] |- _ ] ⇒
rewrite (@lookup_set_spec _ _ _ _ f s y) in H
| [ |- context [ In ?y (lookup_set ?f ?s) ]] ⇒
rewrite (@lookup_set_spec _ _ _ _ f s y)
end.
Lemma lookup_set_empty X `{OrderedType X} Y `{OrderedType Y} (ϱ:X→Y)
`{Proper _ (_eq ==> _eq) ϱ}
: lookup_set ϱ {} [=] {}.
Hint Extern 20 (lookup_set ?ϱ {} [=] {}) ⇒ eapply lookup_set_empty; eauto.
Hint Extern 20 ({} [=] lookup_set ?ϱ {}) ⇒ symmetry; eapply lookup_set_empty; eauto.
Hint Extern 20 (lookup_set ?ϱ (singleton ?v) [=] singleton (?ϱ ?v)) ⇒ eapply lookup_set_singleton´; eauto.
Hint Extern 20 (singleton (?ϱ ?v) [=] lookup_set ?ϱ (singleton ?v)) ⇒ symmetry; eapply lookup_set_singleton´; eauto.