Lvc.Infra.Option

Require Import List.

Cast option in the framework of Monad. The code in this file is taken from CompCert.

Notation "⎣ x ⎦" := (Some x) (at level 0, x at level 200).
Notation "⎣⎦" := (None) (at level 0, x at level 200).

Set Implicit Arguments.

Definition bind (A B : Type) (f : option A) (g : Aoption B) : option B :=
  match f with
    | Some ag a
    | NoneNone
  end.

Extraction Inline bind.

Notation "´mdo´ X <- A ; B" := (bind A (fun XB))
 (at level 200, X ident, A at level 100, B at level 200).

Lemma bind_inversion (A B : Type) (f : option A) (g : Aoption B) (y : B) :
  bind f g = Some y x, f = Some x g x = Some y.

Lemma bind_inversion´ (A B : Type) (f : option A) (g : Aoption B) (y : B) :
  bind f g = Some y{ x : A | f = Some x g x = Some y }.

Reasoning over monadic computations

The monadInv H tactic below simplifies hypotheses of the form
        H: (do x <- a; b) = OK res
By definition of the bind operation, both computations a and b must succeed for their composition to succeed. The tactic therefore generates the following hypotheses:
x: ... H1: a = OK x H2: b x = OK res

Lemma bind_inversion´´ {A B : Type} (f : option A) (g : Aoption B) :
  bind f g = Nonef = None x, f = Some x g x = None.

Ltac monad_simpl :=
  match goal with
    | [ H: ?F = _ |- appcontext [bind ?F ?G = _] ] ⇒ rewrite H; simpl
  end.

Ltac monad_inv1 H :=
  match type of H with
  | (Some _ = Some _) ⇒
      inversion H; clear H; try subst
  | (None = Some _) ⇒
      discriminate
  | (bind ?F ?G = Some ?X) ⇒
      let x := fresh "x" in (
      let EQ1 := fresh "EQ" in (
      let EQ2 := fresh "EQ" in (
        destruct (bind_inversion´ F G H) as [x [EQ1 EQ2]];
        clear H;
        try (monad_inv1 EQ2))))
  | (bind ?F ?G = None) ⇒
    let x := fresh "x" in
    let EQ1 := fresh "EQ" in
    let EQ2 := fresh "EQ" in
    destruct (bind_inversion´´ F G H) as [|[x [EQ1 EQ2]]];
      clear H;
      try (monad_inv1 EQ2)
  end.

Ltac monad_inv H :=
  match type of H with
  | (Some _ = Some _) ⇒ monad_inv1 H
  | (None = Some _) ⇒ monad_inv1 H
  | (Some _ = None) ⇒ monad_inv1 H
  | (bind ?F ?G = Some ?X) ⇒ monad_inv1 H
  | (bind ?F ?G = None) ⇒ monad_inv1 H
  | (@eq _ (@bind _ _ _ _ _ ?G) (?X)) ⇒
    let X := fresh in remember G as X; simpl in H; subst X; monad_inv1 H
  end.