Set Implicit Arguments.
Require Import Morphisms Omega FinFun std.
Require Export syntax semantics calculus.confluence.
Require Import Morphisms Omega FinFun std.
Require Export syntax semantics calculus.confluence.
Section CompatibilityProperties.
Global Instance equiv_lam_proper:
Proper (equiv step ++> equiv step) (@lam X).
Proof.
intros ? ? (v & H1 & H2) % church_rosser; eauto.
rewrite H1, H2. reflexivity.
Qed.
Global Instance equiv_app_proper:
Proper (equiv step ++> equiv step ++> equiv step) (@app X).
Proof.
intros ? ? (v & H1 & H2) % church_rosser ? ? (v' & H3 & H4) % church_rosser;
eauto.
rewrite H1, H2, H3, H4. reflexivity.
Qed.
Lemma ren_equiv s t delta:
s ≡ t -> ren delta s ≡ ren delta t.
Proof.
intros (v & ? & ?) % church_rosser; eauto.
transitivity (ren delta v); [| symmetry].
all: eapply equiv_star, ren_steps; eauto.
Qed.
Global Instance ren_equiv_proper:
Proper (eq ++> equiv step ++> equiv step) (@ren X).
Proof.
intros ? zeta -> s t H; now eapply ren_equiv.
Qed.
Lemma subst_equiv s t sigma:
s ≡ t -> sigma • s ≡ sigma • t.
Proof.
intros (v & ? & ?) % church_rosser; eauto.
transitivity (sigma • v); [| symmetry].
all: eapply equiv_star, subst_steps; eauto.
Qed.
Global Instance subst_equiv_proper:
Proper (eq ++> equiv step ++> equiv step) (@subst_exp X).
Proof.
intros ? zeta -> s t H; now eapply subst_equiv.
Qed.
Lemma subst_pointwise_equiv (s: exp X) sigma tau:
(forall x, x ∈ vars s -> sigma x ≡ tau x) -> sigma • s ≡ tau • s.
Proof.
induction s in sigma, tau |-*; cbn -[vars]; eauto.
- intros H; eapply equiv_lam_proper, IHs.
intros []; cbn -[vars]. reflexivity.
intros ? % vars_varof % varofLambda % varof_vars % H.
unfold funcomp.
now eapply ren_equiv.
- intros H; rewrite IHs1, IHs2; eauto.
Qed.
End CompatibilityProperties.
Global Instance equiv_lam_proper:
Proper (equiv step ++> equiv step) (@lam X).
Proof.
intros ? ? (v & H1 & H2) % church_rosser; eauto.
rewrite H1, H2. reflexivity.
Qed.
Global Instance equiv_app_proper:
Proper (equiv step ++> equiv step ++> equiv step) (@app X).
Proof.
intros ? ? (v & H1 & H2) % church_rosser ? ? (v' & H3 & H4) % church_rosser;
eauto.
rewrite H1, H2, H3, H4. reflexivity.
Qed.
Lemma ren_equiv s t delta:
s ≡ t -> ren delta s ≡ ren delta t.
Proof.
intros (v & ? & ?) % church_rosser; eauto.
transitivity (ren delta v); [| symmetry].
all: eapply equiv_star, ren_steps; eauto.
Qed.
Global Instance ren_equiv_proper:
Proper (eq ++> equiv step ++> equiv step) (@ren X).
Proof.
intros ? zeta -> s t H; now eapply ren_equiv.
Qed.
Lemma subst_equiv s t sigma:
s ≡ t -> sigma • s ≡ sigma • t.
Proof.
intros (v & ? & ?) % church_rosser; eauto.
transitivity (sigma • v); [| symmetry].
all: eapply equiv_star, subst_steps; eauto.
Qed.
Global Instance subst_equiv_proper:
Proper (eq ++> equiv step ++> equiv step) (@subst_exp X).
Proof.
intros ? zeta -> s t H; now eapply subst_equiv.
Qed.
Lemma subst_pointwise_equiv (s: exp X) sigma tau:
(forall x, x ∈ vars s -> sigma x ≡ tau x) -> sigma • s ≡ tau • s.
Proof.
induction s in sigma, tau |-*; cbn -[vars]; eauto.
- intros H; eapply equiv_lam_proper, IHs.
intros []; cbn -[vars]. reflexivity.
intros ? % vars_varof % varofLambda % varof_vars % H.
unfold funcomp.
now eapply ren_equiv.
- intros H; rewrite IHs1, IHs2; eauto.
Qed.
End CompatibilityProperties.
Section InjectivityProperties.
Lemma equiv_var_eq (x y: fin):
var x ≡ var y -> x = y.
Proof.
intros; eapply equiv_unique_normal_forms in H; eauto.
congruence.
Qed.
Lemma equiv_const_eq (x y: X):
const x ≡ const y -> x = y.
Proof.
intros; eapply equiv_unique_normal_forms in H; eauto.
congruence.
Qed.
Lemma equiv_lam_elim (s t: exp X):
lambda s ≡ lambda t -> s ≡ t.
Proof.
intros (v & [] %steps_lam & [] %steps_lam) % church_rosser; intuition; subst.
injection H as ->; eauto.
Qed.
Lemma equiv_app_elim (s s' t t': exp X):
s t ≡ s' t' -> isAtom (head s) -> isAtom (head s') -> s ≡ s' /\ t ≡ t'.
Proof.
intros (v & [] % steps_app & [] % steps_app) % church_rosser H3; eauto.
* do 2 destruct H, H0; intuition; subst;
injection H as -> ->; eauto.
* do 2 destruct H; destruct H0; intuition; subst.
all: destruct (head s'); cbn in *; intuition.
* do 2 destruct H0; destruct H; intuition; subst.
all: destruct (head s); cbn in *; intuition.
* destruct H, H0; intuition.
all: destruct (head s); cbn in *; intuition.
Qed.
Lemma equiv_anti_ren delta (s t: exp X):
Injective delta -> ren delta s ≡ ren delta t -> s ≡ t.
Proof.
intros ? (v & H1 & H2) % church_rosser; eauto.
eapply steps_anti_ren in H1 as [].
eapply steps_anti_ren in H2 as [].
intuition; subst.
eapply anti_ren in H4; eauto.
subst; eauto.
Qed.
End InjectivityProperties.
Lemma equiv_var_eq (x y: fin):
var x ≡ var y -> x = y.
Proof.
intros; eapply equiv_unique_normal_forms in H; eauto.
congruence.
Qed.
Lemma equiv_const_eq (x y: X):
const x ≡ const y -> x = y.
Proof.
intros; eapply equiv_unique_normal_forms in H; eauto.
congruence.
Qed.
Lemma equiv_lam_elim (s t: exp X):
lambda s ≡ lambda t -> s ≡ t.
Proof.
intros (v & [] %steps_lam & [] %steps_lam) % church_rosser; intuition; subst.
injection H as ->; eauto.
Qed.
Lemma equiv_app_elim (s s' t t': exp X):
s t ≡ s' t' -> isAtom (head s) -> isAtom (head s') -> s ≡ s' /\ t ≡ t'.
Proof.
intros (v & [] % steps_app & [] % steps_app) % church_rosser H3; eauto.
* do 2 destruct H, H0; intuition; subst;
injection H as -> ->; eauto.
* do 2 destruct H; destruct H0; intuition; subst.
all: destruct (head s'); cbn in *; intuition.
* do 2 destruct H0; destruct H; intuition; subst.
all: destruct (head s); cbn in *; intuition.
* destruct H, H0; intuition.
all: destruct (head s); cbn in *; intuition.
Qed.
Lemma equiv_anti_ren delta (s t: exp X):
Injective delta -> ren delta s ≡ ren delta t -> s ≡ t.
Proof.
intros ? (v & H1 & H2) % church_rosser; eauto.
eapply steps_anti_ren in H1 as [].
eapply steps_anti_ren in H2 as [].
intuition; subst.
eapply anti_ren in H4; eauto.
subst; eauto.
Qed.
End InjectivityProperties.
Section DisjointnessProperties.
Lemma equiv_neq_var_app (x: nat) (s t: exp X):
var x ≡ s t -> isAtom (head s) -> False.
Proof.
intros EQ.
destruct (head s) as [y | | | ] eqn: H'; intuition.
all: eapply church_rosser in EQ as (v & L & R); eauto.
all: inv L; firstorder using normal_var.
all: eapply steps_app in R as [R|R].
1, 3: destruct R as (? & ? & ? & ?); discriminate.
all: destruct R; intuition; rewrite H' in *; syn.
Qed.
Lemma equiv_neq_lambda_app (s' s t: exp X):
lambda s' ≡ s t -> isAtom (head s) -> False.
Proof.
intros EQ.
destruct (head s) as [y | | | ] eqn: H'; intuition.
all: eapply church_rosser in EQ as (v & L & R); eauto.
all: eapply steps_lam in L as (v' & ? & ?); subst.
all: eapply steps_app in R as [R|R].
1, 3: destruct R as (? & ? & ? & ?); discriminate.
all: destruct R; intuition; rewrite H' in *; syn.
Qed.
Lemma equiv_neq_var_lambda (x: nat) s: ~ var x ≡ lambda s.
Proof.
intros (v & ? & ?) % church_rosser; eauto.
inv H; firstorder using normal_var.
eapply steps_lam in H0 as []; intuition; discriminate.
Qed.
Lemma equiv_neq_var_const (x: nat) c: ~ var x ≡ const c.
Proof.
intros (v & ? & ?) % church_rosser; eauto.
inv H; firstorder using normal_var.
inv H0. inv H.
Qed.
Lemma equiv_neq_const_lam s c: ~ const c ≡ lambda s.
Proof.
intros (v & ? & ?) % church_rosser; eauto.
inv H; firstorder using normal_var.
eapply steps_lam in H0 as []; intuition; discriminate.
inv H1.
Qed.
Lemma equiv_neq_const_app (s t: exp X) c:
const c ≡ s t -> isAtom (head s) -> False.
Proof.
intros EQ.
destruct (head s) as [y | | | ] eqn: H'; intuition.
all: eapply church_rosser in EQ as (v & L & R); eauto.
all: inv L; firstorder using normal_const.
all: eapply steps_app in R as [R|R].
1, 3: destruct R as (? & ? & ? & ?); discriminate.
all: destruct R; intuition; rewrite H' in *; syn.
Qed.
End DisjointnessProperties.
Lemma equiv_neq_var_app (x: nat) (s t: exp X):
var x ≡ s t -> isAtom (head s) -> False.
Proof.
intros EQ.
destruct (head s) as [y | | | ] eqn: H'; intuition.
all: eapply church_rosser in EQ as (v & L & R); eauto.
all: inv L; firstorder using normal_var.
all: eapply steps_app in R as [R|R].
1, 3: destruct R as (? & ? & ? & ?); discriminate.
all: destruct R; intuition; rewrite H' in *; syn.
Qed.
Lemma equiv_neq_lambda_app (s' s t: exp X):
lambda s' ≡ s t -> isAtom (head s) -> False.
Proof.
intros EQ.
destruct (head s) as [y | | | ] eqn: H'; intuition.
all: eapply church_rosser in EQ as (v & L & R); eauto.
all: eapply steps_lam in L as (v' & ? & ?); subst.
all: eapply steps_app in R as [R|R].
1, 3: destruct R as (? & ? & ? & ?); discriminate.
all: destruct R; intuition; rewrite H' in *; syn.
Qed.
Lemma equiv_neq_var_lambda (x: nat) s: ~ var x ≡ lambda s.
Proof.
intros (v & ? & ?) % church_rosser; eauto.
inv H; firstorder using normal_var.
eapply steps_lam in H0 as []; intuition; discriminate.
Qed.
Lemma equiv_neq_var_const (x: nat) c: ~ var x ≡ const c.
Proof.
intros (v & ? & ?) % church_rosser; eauto.
inv H; firstorder using normal_var.
inv H0. inv H.
Qed.
Lemma equiv_neq_const_lam s c: ~ const c ≡ lambda s.
Proof.
intros (v & ? & ?) % church_rosser; eauto.
inv H; firstorder using normal_var.
eapply steps_lam in H0 as []; intuition; discriminate.
inv H1.
Qed.
Lemma equiv_neq_const_app (s t: exp X) c:
const c ≡ s t -> isAtom (head s) -> False.
Proof.
intros EQ.
destruct (head s) as [y | | | ] eqn: H'; intuition.
all: eapply church_rosser in EQ as (v & L & R); eauto.
all: inv L; firstorder using normal_const.
all: eapply steps_app in R as [R|R].
1, 3: destruct R as (? & ? & ? & ?); discriminate.
all: destruct R; intuition; rewrite H' in *; syn.
Qed.
End DisjointnessProperties.
Section HuetDefinition.
Variable (s t v1 v2: exp X).
Hypothesis (E1: s ▷ v1) (E2: t ▷ v2).
Lemma equiv_huet_forward:
s ≡ t -> v1 = v2.
Proof.
destruct E1 as [H1 N1], E2 as [H2 N2].
intros H; eapply equiv_unique_normal_forms; eauto.
now rewrite <-H1, <-H2.
Qed.
Lemma equiv_huet_backward:
v1 = v2 -> s ≡ t.
Proof.
intros; subst; destruct E1, E2; eapply equiv_join; eauto.
Qed.
End HuetDefinition.
End Equivalence.
Notation "s ≡ t" := (equiv step s t) (at level 70).
Hint Resolve equiv_neq_var_app equiv_neq_var_lambda equiv_neq_var_const
equiv_neq_const_app equiv_neq_const_lam equiv_neq_lambda_app.
Ltac ClearRefl H :=
let T := type of H in
match T with
| ?X ≡ ?X => clear H
| _ => idtac
end.
Ltac Injection H :=
let T := type of H in
let H1 := fresh "H" in
let H2 := fresh "H" in
match T with
| var _ ≡ var _ => eapply equiv_var_eq in H as H1; ClearRefl H1
| const _ ≡ const _ => eapply equiv_const_eq in H as H1; ClearRefl H1
| lambda _ ≡ lambda _ => eapply equiv_lam_elim in H as H1; ClearRefl H1
| app _ _ ≡ app _ _ => eapply equiv_app_elim in H as [H1 H2]; [| atom..]; ClearRefl H1; ClearRefl H2
end.
Ltac Discriminate :=
match goal with
| [H: var _ ≡ const _ |- _] => eapply equiv_neq_var_const in H as []
| [H: const _ ≡ var _ |- _] => symmetry in H; eapply equiv_neq_var_const in H as []
| [H: var _ ≡ app _ _ |- _] => solve [eapply equiv_neq_var_app in H as []; atom]
| [H: app _ _ ≡ var _ |- _] => solve [symmetry in H; eapply equiv_neq_var_app in H as []; atom]
| [H: var _ ≡ lambda _ |- _] => eapply equiv_neq_var_lambda in H as []
| [H: lambda _ ≡ var _ |- _] => symmetry in H; eapply equiv_neq_var_lambda in H as []
| [H: const _ ≡ lambda _ |- _] => eapply equiv_neq_const_lam in H as []
| [H: lambda _ ≡ const _ |- _] => symmetry in H; eapply equiv_neq_const_lam in H as []
| [H: const _ ≡ app _ _ |- _] => solve [eapply equiv_neq_const_app in H as []; atom]
| [H: app _ _ ≡ const _ |- _] => solve [symmetry in H; eapply equiv_neq_const_app in H as []; atom]
| [H: lambda _ ≡ app _ _ |- _] => solve [eapply equiv_neq_lambda_app in H as []; atom]
| [H: app _ _ ≡ lambda _ |- _] => solve [symmetry in H; eapply equiv_neq_lambda_app in H as []; atom]
| [H: var _ ≡ var _ |- _] => solve [eapply equiv_var_eq in H as ?; discriminate]
| [H: const _ ≡ const _ |- _] => solve [eapply equiv_const_eq in H as ?; discriminate]
end.
Lemma equiv_head_equal X (s t: exp X):
s ≡ t -> isAtom (head s) -> isAtom (head t) -> head s = head t.
Proof.
induction s in t |-*; destruct t; intros; try Discriminate; Injection H; subst; eauto.
- cbn in *; intuition.
- cbn; eapply IHs1; eauto.
Qed.
Variable (s t v1 v2: exp X).
Hypothesis (E1: s ▷ v1) (E2: t ▷ v2).
Lemma equiv_huet_forward:
s ≡ t -> v1 = v2.
Proof.
destruct E1 as [H1 N1], E2 as [H2 N2].
intros H; eapply equiv_unique_normal_forms; eauto.
now rewrite <-H1, <-H2.
Qed.
Lemma equiv_huet_backward:
v1 = v2 -> s ≡ t.
Proof.
intros; subst; destruct E1, E2; eapply equiv_join; eauto.
Qed.
End HuetDefinition.
End Equivalence.
Notation "s ≡ t" := (equiv step s t) (at level 70).
Hint Resolve equiv_neq_var_app equiv_neq_var_lambda equiv_neq_var_const
equiv_neq_const_app equiv_neq_const_lam equiv_neq_lambda_app.
Ltac ClearRefl H :=
let T := type of H in
match T with
| ?X ≡ ?X => clear H
| _ => idtac
end.
Ltac Injection H :=
let T := type of H in
let H1 := fresh "H" in
let H2 := fresh "H" in
match T with
| var _ ≡ var _ => eapply equiv_var_eq in H as H1; ClearRefl H1
| const _ ≡ const _ => eapply equiv_const_eq in H as H1; ClearRefl H1
| lambda _ ≡ lambda _ => eapply equiv_lam_elim in H as H1; ClearRefl H1
| app _ _ ≡ app _ _ => eapply equiv_app_elim in H as [H1 H2]; [| atom..]; ClearRefl H1; ClearRefl H2
end.
Ltac Discriminate :=
match goal with
| [H: var _ ≡ const _ |- _] => eapply equiv_neq_var_const in H as []
| [H: const _ ≡ var _ |- _] => symmetry in H; eapply equiv_neq_var_const in H as []
| [H: var _ ≡ app _ _ |- _] => solve [eapply equiv_neq_var_app in H as []; atom]
| [H: app _ _ ≡ var _ |- _] => solve [symmetry in H; eapply equiv_neq_var_app in H as []; atom]
| [H: var _ ≡ lambda _ |- _] => eapply equiv_neq_var_lambda in H as []
| [H: lambda _ ≡ var _ |- _] => symmetry in H; eapply equiv_neq_var_lambda in H as []
| [H: const _ ≡ lambda _ |- _] => eapply equiv_neq_const_lam in H as []
| [H: lambda _ ≡ const _ |- _] => symmetry in H; eapply equiv_neq_const_lam in H as []
| [H: const _ ≡ app _ _ |- _] => solve [eapply equiv_neq_const_app in H as []; atom]
| [H: app _ _ ≡ const _ |- _] => solve [symmetry in H; eapply equiv_neq_const_app in H as []; atom]
| [H: lambda _ ≡ app _ _ |- _] => solve [eapply equiv_neq_lambda_app in H as []; atom]
| [H: app _ _ ≡ lambda _ |- _] => solve [symmetry in H; eapply equiv_neq_lambda_app in H as []; atom]
| [H: var _ ≡ var _ |- _] => solve [eapply equiv_var_eq in H as ?; discriminate]
| [H: const _ ≡ const _ |- _] => solve [eapply equiv_const_eq in H as ?; discriminate]
end.
Lemma equiv_head_equal X (s t: exp X):
s ≡ t -> isAtom (head s) -> isAtom (head t) -> head s = head t.
Proof.
induction s in t |-*; destruct t; intros; try Discriminate; Injection H; subst; eauto.
- cbn in *; intuition.
- cbn; eapply IHs1; eauto.
Qed.