Require Import List Arith Lia.
From Undecidability.Shared.Libs.DLW
Require Import utils subcode sss.
From Undecidability.MinskyMachines Require Export MM.
From Undecidability.MinskyMachines.MMenv Require Import env.
Set Implicit Arguments.
Set Default Proof Using "Type".
Section Minsky_Machine_env_based.
Variable (X : Set) (X_eq_dec : eqdec X).
Definition mm_state := (nat*env X nat)%type.
Local Notation " e ⇢ x " := (@get_env _ _ e x).
Local Notation " e ⦃ x ⇠ v ⦄ " := (@set_env _ _ X_eq_dec e x v).
Inductive mm_sss_env : mm_instr X -> mm_state -> mm_state -> Prop :=
| in_mm_sss_env_inc : forall i x v, INC x // (i,v) -1> (1+i,v⦃x⇠S(v⇢x)⦄)
| in_mm_sss_env_dec_0 : forall i x k v, v⇢x = O -> DEC x k // (i,v) -1> (k,v)
| in_mm_sss_env_dec_1 : forall i x k v u, v⇢x = S u -> DEC x k // (i,v) -1> (1+i,v⦃x⇠u⦄)
where "i // s -1> t" := (mm_sss_env i s t).
Fact mm_sss_env_fun i s t1 t2 : i // s -1> t1 -> i // s -1> t2 -> t1 = t2.
Proof.
intros []; subst.
inversion 1; subst; auto.
inversion 1; subst; auto.
rewrite H in H6; discriminate.
inversion 1; subst; auto.
rewrite H in H6; discriminate.
rewrite H in H6; inversion H6; subst; auto.
Qed.
Fact mm_sss_env_total ii s : { t | ii // s -1> t }.
Proof.
destruct s as (i,v).
destruct ii as [ x | x j ]; [ | case_eq (v⇢x); [ | intros k ]; intros E ].
* exists (1+i,v⦃x⇠S(v⇢x)⦄); constructor.
* exists (j,v); constructor; auto.
* exists (1+i,v⦃x⇠k⦄); constructor; auto.
Qed.
Fact mm_sss_env_INC_inv x i v j w : INC x // (i,v) -1> (j,w) -> j=1+i /\ w = v⦃x⇠S(v⇢x)⦄.
Proof. inversion 1; subst; auto. Qed.
Fact mm_sss_env_DEC0_inv x k i v j w : v⇢x = O -> DEC x k // (i,v) -1> (j,w) -> j = k /\ w = v.
Proof.
intros H; inversion 1; subst; auto; rewrite H in H2; try discriminate.
Qed.
Fact mm_sss_env_DEC1_inv x k u i v j w : v⇢x = S u -> DEC x k // (i,v) -1> (j,w) -> j=1+i /\ w = v⦃x⇠u⦄.
Proof.
intros H; inversion 1; subst; auto; rewrite H in H2; try discriminate.
inversion H2; subst; auto.
Qed.
Notation "P // s -[ k ]-> t" := (sss_steps mm_sss_env P k s t).
Notation "P // s -+> t" := (sss_progress mm_sss_env P s t).
Notation "P // s ->> t" := (sss_compute mm_sss_env P s t).
Fact mm_env_progress_INC P i x v st :
(i,INC x::nil) <sc P
-> P // (1+i,v⦃x⇠S(v⇢x)⦄) ->> st
-> P // (i,v) -+> st.
Proof.
intros H1 H2.
apply sss_progress_compute_trans with (2 := H2).
apply subcode_sss_progress with (1 := H1).
exists 1; split; auto; apply sss_steps_1.
apply in_sss_step with (l := nil).
simpl; lia.
constructor; auto.
Qed.
Corollary mm_env_compute_INC P i x v st :
(i,INC x::nil) <sc P
-> P // (1+i,v⦃x⇠S(v⇢x)⦄) ->> st
-> P // (i,v) ->> st.
Proof. intros; apply sss_progress_compute; eapply mm_env_progress_INC; eauto. Qed.
Fact mm_env_progress_DEC_0 P i x k v st :
(i,DEC x k::nil) <sc P
-> v⇢x = O
-> P // (k,v) ->> st
-> P // (i,v) -+> st.
Proof.
intros H1 H2 H3.
apply sss_progress_compute_trans with (2 := H3).
apply subcode_sss_progress with (1 := H1).
exists 1; split; auto; apply sss_steps_1.
apply in_sss_step with (l := nil).
simpl; lia.
constructor; auto.
Qed.
Corollary mm_env_compute_DEC_0 P i x k v st :
(i,DEC x k::nil) <sc P
-> v⇢x = O
-> P // (k,v) ->> st
-> P // (i,v) ->> st.
Proof. intros; apply sss_progress_compute; eapply mm_env_progress_DEC_0; eauto. Qed.
Fact mm_env_progress_DEC_S P i x k v u st :
(i,DEC x k::nil) <sc P
-> v⇢x = S u
-> P // (1+i,v⦃x⇠u⦄) ->> st
-> P // (i,v) -+> st.
Proof.
intros H1 H2 H3.
apply sss_progress_compute_trans with (2 := H3).
apply subcode_sss_progress with (1 := H1).
exists 1; split; auto; apply sss_steps_1.
apply in_sss_step with (l := nil).
simpl; lia.
constructor; auto.
Qed.
Corollary mm_env_compute_DEC_S P i x k v u st :
(i,DEC x k::nil) <sc P
-> v⇢x = S u
-> P // (1+i,v⦃x⇠u⦄) ->> st
-> P // (i,v) ->> st.
Proof. intros; apply sss_progress_compute; eapply mm_env_progress_DEC_S; eauto. Qed.
Fact mm_env_steps_INC_inv k P i x v st :
(i,INC x::nil) <sc P
-> k <> 0
-> P // (i,v) -[k]-> st
-> exists k', k' < k /\ P // (1+i,v⦃x⇠S(v⇢x)⦄) -[k']-> st.
Proof.
intros H1 H2 H4.
apply sss_steps_inv in H4.
destruct H4 as [ (? & ?) | (k' & st2 & ? & H4 & H5) ]; subst; auto.
destruct H2; auto.
apply sss_step_subcode_inv with (1 := H1) in H4.
exists k'; split.
lia.
inversion H4; subst; auto.
Qed.
Fact mm_env_steps_DEC_0_inv k P i x p v st :
(i,DEC x p::nil) <sc P
-> k <> 0
-> v⇢x = 0
-> P // (i,v) -[k]-> st
-> exists k', k' < k /\ P // (p,v) -[k']-> st.
Proof.
intros H1 H2 H3 H4.
apply sss_steps_inv in H4.
destruct H4 as [ (? & ?) | (k' & st2 & ? & H4 & H5) ]; subst; auto.
destruct H2; auto.
apply sss_step_subcode_inv with (1 := H1) in H4.
exists k'; split.
lia.
inversion H4; subst; auto.
rewrite H3 in H9; discriminate.
Qed.
Fact mm_env_steps_DEC_1_inv k P i x p v u st :
(i,DEC x p::nil) <sc P
-> k <> 0
-> v⇢x = S u
-> P // (i,v) -[k]-> st
-> exists k', k' < k /\ P // (1+i,v⦃x⇠u⦄) -[k']-> st.
Proof.
intros H1 H2 H3 H4.
apply sss_steps_inv in H4.
destruct H4 as [ (? & ?) | (k' & st2 & ? & H4 & H5) ]; subst; auto.
destruct H2; auto.
apply sss_step_subcode_inv with (1 := H1) in H4.
exists k'; split.
lia.
inversion H4; subst; auto; rewrite H3 in H9.
discriminate.
inversion H9; subst; auto.
Qed.
End Minsky_Machine_env_based.
Local Notation "P // s -[ k ]-> t" := (sss_steps (@mm_sss_env _ _) P k s t).
Local Notation "P // s -+> t" := (sss_progress (@mm_sss_env _ _) P s t).
Local Notation "P // s ->> t" := (sss_compute (@mm_sss_env _ _) P s t).
Tactic Notation "mm" "env" "INC" "with" uconstr(a) :=
match goal with
| |- _ // _ -+> _ => apply mm_env_progress_INC with (x := a)
| |- _ // _ ->> _ => apply mm_env_compute_INC with (x := a)
end; auto.
Tactic Notation "mm" "env" "DEC" "0" "with" uconstr(a) uconstr(b) :=
match goal with
| |- _ // _ -+> _ => apply mm_env_progress_DEC_0 with (x := a) (k := b)
| |- _ // _ ->> _ => apply mm_env_compute_DEC_0 with (x := a) (k := b)
end; auto.
Tactic Notation "mm" "env" "DEC" "S" "with" uconstr(a) uconstr(b) uconstr(c) :=
match goal with
| |- _ // _ -+> _ => apply mm_env_progress_DEC_S with (x := a) (k := b) (u := c)
| |- _ // _ ->> _ => apply mm_env_compute_DEC_S with (x := a) (k := b) (u := c)
end; auto.
Tactic Notation "mm" "env" "stop" := exists 0; apply sss_steps_0; auto.