From Undecidability.DiophantineConstraints Require Import H10C.
From Undecidability.DiophantineConstraints.Util Require Import H10UPC_facts.
From Undecidability.FOL Require Import Util.Syntax Util.Kripke Util.Deduction Util.Tarski Util.Syntax_facts Util.sig_bin.
From Undecidability.Shared Require Import Dec.
From Undecidability.Shared.Libs.PSL Require Import Numbers.
From Coq Require Import Arith Lia List.
Idea: The relation (#) has the following properties:
Translation mapping:
- n ~ p: n is left component of p
- p ~ n: p is right component of p
- p ~ p: the special relation H10UPC
- n ~ m: n = m. Special case n=0, m=1:
The instance h10 of H10UPC is a yes-instance.
This is to facilitate Friedman translation
Coq | Paper |
H10UPC | UDPC |
H10UC | UDC |
form | mathbb F |
Pr | rotated double tilde |
i_Pr | rotated double tilde, but in a model |
IB | mathcal M, the standard model |
emplace_forall | big forall, the iterated quantifier |
wFalse | bot_w |
sFalse | bot_s |
Not | neg_w |
rel | R |
translate_rec | code |
Set Default Proof Using "Type".
Set Default Goal Selector "!".
Notation Pr t t' := (@atom _ sig_binary _ _ tt (Vector.cons _ t _ (Vector.cons _ t' _ (Vector.nil _)))).
Some utils for iteration
Section Utils.
Lemma it_shift (X:Type) (f:X->X) v n : it f (S n) v = it f n (f v).
Proof.
induction n as [|n IH].
- easy.
- cbn. f_equal. apply IH.
Qed.
End Utils.
Lemma it_shift (X:Type) (f:X->X) v n : it f (S n) v = it f n (f v).
Proof.
induction n as [|n IH].
- easy.
- cbn. f_equal. apply IH.
Qed.
End Utils.
The validity reduction.
We assume a generic falsity flag and a list h10 for which we build a formula.
All are placed in a context where $0 is the 0 constant and $1, $2 are arbitrary but fixed. We do a Friedman translation, where this represents falsity.
We use a stronger version of falsity, which is <-> False in our standart model, to ease writing eliminators.
Friedman not
$k is a number
$k is a pair
If $k is a pair (r), where r are numbers, then t.
if the pairs $pl = ($a,$b), $pr = ($c,$d) are in relation, then t
There exist (Friedman translated) pairs relating ($a,$b) to ($c,$d)
Definition erel a b c d t := Not (∀ ∀ P 0 (2+a) (2+b)
(P 1 (2+c) (2+d)
(Pr $0 $1 --> wFalse (2+t)))) t.
(P 1 (2+c) (2+d)
(Pr $0 $1 --> wFalse (2+t)))) t.
Axiom 1 - zero is a number
Axiom 2 - we can build (left) successors: for each pair (a,0) we have a pair (S a, 0)
Axiom 3 - we can build right successors: (x,y)#(a,b) -> (x,S y)#(S a,S (b+y))
Definition F_succ_right := ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀
∀ ∀ ∀ ∀ ∀ ∀ ∀
rel 7 8 0 1 2 3
(rel 9 10 3 1 4 3
(rel 11 12 1 15 5 15
(rel 13 14 2 15 6 15
(erel 0 5 6 4 16)))) .
∀ ∀ ∀ ∀ ∀ ∀ ∀
rel 7 8 0 1 2 3
(rel 9 10 3 1 4 3
(rel 11 12 1 15 5 15
(rel 13 14 2 15 6 15
(erel 0 5 6 4 16)))) .
Generate n all quantifiers around i
Translate our formula, one relation at a time
Translate an entire instance of H10UPC, assuming a proper context
Fixpoint translate_rec (t:form) (nv:nat) (l:list h10upc) :=
match l with nil => t
| l::lr => translate_single l nv --> translate_rec t nv lr end.
match l with nil => t
| l::lr => translate_single l nv --> translate_rec t nv lr end.
Actually translate the instance of H10UPC, by creating a proper context
Definition translate_constraints (x:list h10upc) :=
let nv := S (highest_var_list x)
in (emplace_forall nv (translate_rec (Pr $(S nv) $(2+nv)) (S nv) x)) --> Pr $1 $2.
let nv := S (highest_var_list x)
in (emplace_forall nv (translate_rec (Pr $(S nv) $(2+nv)) (S nv) x)) --> Pr $1 $2.
The actual reduction instance. If h10 is a yes-instance of H10UPC, this formula is valid and vice-versa
The 3 variables are the zero constant and two arbitrary values which define the atomic predicate for
Friedman translation.
We now define our standard model.
An element of the standard model is either a number or a pair.
The interpretation of our single binary relation
Definition dom_rel (a : dom) (b:dom) : Prop := match (a,b) with
| (Num 0, Num 1) => H10UPC_SAT h10
| (Num n1, Num n2) => n1 = n2
| (Num n1, Pair x2 _) => n1 = x2
| (Pair _ y1, Num n2) => n2 = y1
| (Pair x1 y1, Pair x2 y2) => h10upc_sem_direct ((x1, y1), (x2, y2))
end.
Global Instance IB : interp (dom).
Proof using h10.
split; intros [] v.
exact (dom_rel (Vector.hd v) (Vector.hd (Vector.tl v))).
Defined.
| (Num 0, Num 1) => H10UPC_SAT h10
| (Num n1, Num n2) => n1 = n2
| (Num n1, Pair x2 _) => n1 = x2
| (Pair _ y1, Num n2) => n2 = y1
| (Pair x1 y1, Pair x2 y2) => h10upc_sem_direct ((x1, y1), (x2, y2))
end.
Global Instance IB : interp (dom).
Proof using h10.
split; intros [] v.
exact (dom_rel (Vector.hd v) (Vector.hd (Vector.tl v))).
Defined.
Now we need rewrite helpers which transform our syntactic sugar into useful statements in the model
Lemma IB_sFalse rho : rho ⊨ (∀ ∀ Pr $0 $1) <-> False.
Proof.
split.
* intros H. specialize (H (Num 0) (Num 1)). cbn in H. congruence.
* intros [].
Qed.
Opaque sFalse.
Lemma IB_sNot rho f : rho ⊨ (f --> sFalse) <-> ~ (rho ⊨ f).
Proof.
split.
* intros H. cbn in H. now rewrite IB_sFalse in H.
* intros H. cbn. now rewrite IB_sFalse.
Qed.
Lemma IB_wFalse rho t : rho ⊨ wFalse t <-> dom_rel (rho t) (rho (S t)).
Proof.
split.
* intros H. apply H.
* intros H. apply H.
Qed.
Opaque wFalse.
Lemma IB_Not rho f t : rho ⊨ Not f t <-> ((rho ⊨ f) -> rho ⊨ wFalse t).
Proof.
split.
* intros H. cbn in H. now rewrite IB_wFalse in H.
* intros H. cbn. now rewrite IB_wFalse.
Qed.
Opaque Not.
Definition rho_canon (rho : nat -> dom) := rho 0 = Num 0.
Lemma IB_F_zero rho : rho_canon rho -> rho ⊨ F_zero.
Proof.
intros H0. cbn. now rewrite !H0.
Qed.
Lemma IB_N_e rho i n : rho i = n -> rho ⊨ N i -> {m:nat | Num m = n}.
Proof.
intros Hrho H. destruct n as [m|a b].
* now exists m.
* exfalso. cbn in H. rewrite Hrho in H. apply (@h10_rel_irref (a,b) H).
Qed.
Lemma IB_N_i rho i n : rho i = Num n -> (rho) ⊨ N i.
Proof. cbn. intros ->. now destruct n as [|n'] eqn:Heq.
Qed.
Opaque N.
Lemma IB_P'_e rho i n : rho i = n -> rho ⊨ P' i -> {a:nat & {b:nat & n = Pair a b}}.
Proof.
intros Hrho H. destruct n as [m|a b].
* exfalso. unfold P' in H. rewrite IB_sNot in H. eapply H, IB_N_i, Hrho.
* now exists a, b.
Qed.
Lemma IB_P'_i rho i a b : rho i = (Pair a b) -> rho ⊨ P' i.
Proof.
unfold P'. rewrite IB_sNot. intros Hrho H. destruct (@IB_N_e rho i (Pair a b)).
1-2:easy. congruence.
Qed.
Opaque P'.
Lemma IB_P_e rho p l r ip il ir c :
rho ip = p -> rho il = l -> rho ir = r
-> rho ⊨ P ip il ir c -> {a:nat & {b:nat & p = Pair a b /\ l = Num a /\ r = Num b}}
-> rho ⊨ c.
Proof.
intros Hp Hl Hr H [a [b [Hp' [Hl' Hr']]]]. cbn in H.
rewrite Hp, Hl, Hr, Hp', Hl', Hr' in H. cbn in H. apply H.
- eapply IB_P'_i. now rewrite Hp, Hp'.
- eapply IB_N_i. now rewrite Hl, Hl'.
- eapply IB_N_i. now rewrite Hr, Hr'.
- now destruct a.
- easy.
Qed.
Lemma IB_P_i rho ip il ir c : (forall a b, rho ip = (Pair a b)
-> rho il = (Num a) -> rho ir = (Num b) -> rho ⊨ c)
-> rho ⊨ P ip il ir c.
Proof.
intros Hplrc. intros [pa [pb Hp]]%(IB_P'_e (n:=rho ip))
[la Ha]%(IB_N_e (n:=rho il))
[rb Hb]%(IB_N_e (n:=rho ir)) Hpl Hpr. 2-4: easy.
cbn in Hpl, Hpr. rewrite Hp,<-Ha,<-Hb in *. apply (@Hplrc la rb); destruct la; congruence.
Qed.
Opaque P.
Proof.
split.
* intros H. specialize (H (Num 0) (Num 1)). cbn in H. congruence.
* intros [].
Qed.
Opaque sFalse.
Lemma IB_sNot rho f : rho ⊨ (f --> sFalse) <-> ~ (rho ⊨ f).
Proof.
split.
* intros H. cbn in H. now rewrite IB_sFalse in H.
* intros H. cbn. now rewrite IB_sFalse.
Qed.
Lemma IB_wFalse rho t : rho ⊨ wFalse t <-> dom_rel (rho t) (rho (S t)).
Proof.
split.
* intros H. apply H.
* intros H. apply H.
Qed.
Opaque wFalse.
Lemma IB_Not rho f t : rho ⊨ Not f t <-> ((rho ⊨ f) -> rho ⊨ wFalse t).
Proof.
split.
* intros H. cbn in H. now rewrite IB_wFalse in H.
* intros H. cbn. now rewrite IB_wFalse.
Qed.
Opaque Not.
Definition rho_canon (rho : nat -> dom) := rho 0 = Num 0.
Lemma IB_F_zero rho : rho_canon rho -> rho ⊨ F_zero.
Proof.
intros H0. cbn. now rewrite !H0.
Qed.
Lemma IB_N_e rho i n : rho i = n -> rho ⊨ N i -> {m:nat | Num m = n}.
Proof.
intros Hrho H. destruct n as [m|a b].
* now exists m.
* exfalso. cbn in H. rewrite Hrho in H. apply (@h10_rel_irref (a,b) H).
Qed.
Lemma IB_N_i rho i n : rho i = Num n -> (rho) ⊨ N i.
Proof. cbn. intros ->. now destruct n as [|n'] eqn:Heq.
Qed.
Opaque N.
Lemma IB_P'_e rho i n : rho i = n -> rho ⊨ P' i -> {a:nat & {b:nat & n = Pair a b}}.
Proof.
intros Hrho H. destruct n as [m|a b].
* exfalso. unfold P' in H. rewrite IB_sNot in H. eapply H, IB_N_i, Hrho.
* now exists a, b.
Qed.
Lemma IB_P'_i rho i a b : rho i = (Pair a b) -> rho ⊨ P' i.
Proof.
unfold P'. rewrite IB_sNot. intros Hrho H. destruct (@IB_N_e rho i (Pair a b)).
1-2:easy. congruence.
Qed.
Opaque P'.
Lemma IB_P_e rho p l r ip il ir c :
rho ip = p -> rho il = l -> rho ir = r
-> rho ⊨ P ip il ir c -> {a:nat & {b:nat & p = Pair a b /\ l = Num a /\ r = Num b}}
-> rho ⊨ c.
Proof.
intros Hp Hl Hr H [a [b [Hp' [Hl' Hr']]]]. cbn in H.
rewrite Hp, Hl, Hr, Hp', Hl', Hr' in H. cbn in H. apply H.
- eapply IB_P'_i. now rewrite Hp, Hp'.
- eapply IB_N_i. now rewrite Hl, Hl'.
- eapply IB_N_i. now rewrite Hr, Hr'.
- now destruct a.
- easy.
Qed.
Lemma IB_P_i rho ip il ir c : (forall a b, rho ip = (Pair a b)
-> rho il = (Num a) -> rho ir = (Num b) -> rho ⊨ c)
-> rho ⊨ P ip il ir c.
Proof.
intros Hplrc. intros [pa [pb Hp]]%(IB_P'_e (n:=rho ip))
[la Ha]%(IB_N_e (n:=rho il))
[rb Hb]%(IB_N_e (n:=rho ir)) Hpl Hpr. 2-4: easy.
cbn in Hpl, Hpr. rewrite Hp,<-Ha,<-Hb in *. apply (@Hplrc la rb); destruct la; congruence.
Qed.
Opaque P.
We show our model fulfills axiom 1
Lemma IB_F_succ_left rho : rho_canon rho -> rho ⊨ F_succ_left.
Proof.
intros H0. unfold F_succ_left. intros n [m Hnm]%(IB_N_e (n:=n)). 2:easy.
rewrite IB_Not. cbn. intros Hc.
specialize (Hc (Pair m 0) (Num (S m)) (Pair (S m) 0)).
eapply IB_P_e in Hc. 2-4:easy. 2: exists m, 0; cbn; auto.
eapply IB_P_e in Hc. 2-4:easy. 2: exists (S m), 0; cbn; auto.
rewrite IB_wFalse. unfold scons.
cbn in Hc. rewrite IB_wFalse in Hc. unfold scons in Hc.
apply Hc; split; lia.
Qed.
We show we can extract constraints from our model
Lemma IB_rel_e rho ipl ipr ia ib ic id t : rho ⊨ rel ipl ipr ia ib ic id t
-> {a&{b&{c&{d|rho ipl=Pair a b
/\ rho ipr = Pair c d
/\ rho ia=Num a
/\ rho ib=Num b
/\ rho ic=Num c
/\ rho id=Num d
/\ h10upc_sem_direct ((a,b),(c,d))}}}}
-> rho ⊨ t.
Proof.
intros H [a [b [c [d [Hpl [Hpr [Ha [Hb [Hc [Hd Habcd]]]]]]]]]].
unfold rel in H.
eapply IB_P_e in H. 2-4: easy. 2: exists a, b; cbn; auto.
eapply IB_P_e in H. 2-4: easy. 2: exists c, d; cbn; auto.
apply H. cbn. rewrite Hpl, Hpr. easy.
Qed.
Lemma IB_rel_i rho ipl ipr ia ib ic id t :
({a&{b&{c&{d|rho ipl=Pair a b
/\ rho ipr = Pair c d
/\ rho ia=Num a
/\ rho ib=Num b
/\ rho ic=Num c
/\ rho id=Num d
/\ h10upc_sem_direct ((a,b),(c,d))}}}} -> rho ⊨ t)
-> rho ⊨ rel ipl ipr ia ib ic id t.
Proof.
intros H.
apply IB_P_i. intros a b Hpl Ha Hb.
apply IB_P_i. intros c d Hpr Hc Hd.
intros Habcd. apply H. exists a,b,c,d. cbn in Habcd. rewrite Hpl, Hpr in Habcd. now repeat split.
Qed.
We show our model fulfills axiom 2
Lemma IB_F_succ_right rho : rho_canon rho -> rho ⊨ F_succ_right.
Proof.
intros H0. unfold F_succ_right. intros p1 p2 p3 p4 p5 p6 p7 p8 a' y' c b a y x.
apply IB_rel_i. cbn. intros [nx [ny [na [nb [Hp8 [Hp7 [Hx [Hy [Ha [Hb [Hr1l Hr1r]]]]]]]]]]].
apply IB_rel_i. cbn. intros [nb' [ny' [nc [nb'' [Hp6 [Hp5 [Hb' [Hy' [Hc [Hb'' [Hr2l Hr2r]]]]]]]]]]].
apply IB_rel_i. cbn. intros [ny'' [z [n'y [z' [Hp4 [Hp3 [Hy'' [Hz [H'y [Hz' [Hr3l Hr3r]]]]]]]]]]].
apply IB_rel_i. cbn. intros [na' [z'' [n'a [z''' [Hp2 [Hp1 [Ha' [Hz'' [H'a [Hz''' [Hr4l Hr4r]]]]]]]]]]].
unfold erel. cbn.
rewrite IB_Not. intros H.
rewrite H0 in *.
specialize (H (Pair n'a (nc)) (Pair nx n'y)).
eapply IB_P_e in H. 2-4: easy. 2: exists nx, n'y; cbn; firstorder.
eapply IB_P_e in H. 2-4: easy. 2: exists n'a, nc; cbn; firstorder.
cbn in H. rewrite IB_wFalse in H. apply H.
assert (z=0 /\ z' = 0 /\ z'' = 0 /\ z''' = 0) as [Hz0 [Hz01 [Hz02 Hz03]]].
1:firstorder;congruence. cbn -[dom_rel] in H.
rewrite Hz0, Hz01, Hz02, Hz03 in *. split.
- assert (ny'' = ny /\ na' = na) as [HHy HHa].
1:firstorder;congruence. lia.
- assert (nb' = nb /\ ny' = ny /\ ny'' = ny /\ na'=na) as [HHb [HHy [HHHy HHa]]].
1:firstorder;congruence. lia.
Qed.
We show we can encode constraints into our model
rho_descr_phi describes that rho is defined by the solution to h10
Definition rho_descr_phi rho (φ:nat->nat) n :=
forall k, k < n -> match rho k with Num n => n = (φ k) | _ => True end.
Lemma IB_single_constr rho φ (n:nat) (h:h10upc) : rho_descr_phi rho φ n
-> highest_var h < n
-> rho ⊨ translate_single h (S n)
-> (h10upc_sem φ h -> dom_rel (rho (1+n)) (rho (2+n)))
-> dom_rel (rho (1+n)) (rho (2+n)).
Proof.
intros Hrhophi Hmaxhall.
destruct h as [[a b][c d]]. unfold translate_single. cbn in Hmaxhall.
intros Htr Hcon. unfold erel in Htr. rewrite IB_Not in Htr.
apply Htr.
intros p2 p1.
apply IB_P_i. cbn. intros na nb Hp1 Ha Hb.
apply IB_P_i. cbn. intros nc nd Hp2 Hc Hd. rewrite Hp1, Hp2.
intros Habcd.
apply Hcon.
assert (na = φ a) as ->. 1: pose (@Hrhophi a) as Hp; rewrite Ha in Hp; apply Hp; lia.
assert (nb = φ b) as ->. 1: pose (@Hrhophi b) as Hp; rewrite Hb in Hp; apply Hp; lia.
assert (nc = φ c) as ->. 1: pose (@Hrhophi c) as Hp; rewrite Hc in Hp; apply Hp; lia.
assert (nd = φ d) as ->. 1: pose (@Hrhophi d) as Hp; rewrite Hd in Hp; apply Hp; lia.
apply Habcd.
Qed.
forall k, k < n -> match rho k with Num n => n = (φ k) | _ => True end.
Lemma IB_single_constr rho φ (n:nat) (h:h10upc) : rho_descr_phi rho φ n
-> highest_var h < n
-> rho ⊨ translate_single h (S n)
-> (h10upc_sem φ h -> dom_rel (rho (1+n)) (rho (2+n)))
-> dom_rel (rho (1+n)) (rho (2+n)).
Proof.
intros Hrhophi Hmaxhall.
destruct h as [[a b][c d]]. unfold translate_single. cbn in Hmaxhall.
intros Htr Hcon. unfold erel in Htr. rewrite IB_Not in Htr.
apply Htr.
intros p2 p1.
apply IB_P_i. cbn. intros na nb Hp1 Ha Hb.
apply IB_P_i. cbn. intros nc nd Hp2 Hc Hd. rewrite Hp1, Hp2.
intros Habcd.
apply Hcon.
assert (na = φ a) as ->. 1: pose (@Hrhophi a) as Hp; rewrite Ha in Hp; apply Hp; lia.
assert (nb = φ b) as ->. 1: pose (@Hrhophi b) as Hp; rewrite Hb in Hp; apply Hp; lia.
assert (nc = φ c) as ->. 1: pose (@Hrhophi c) as Hp; rewrite Hc in Hp; apply Hp; lia.
assert (nd = φ d) as ->. 1: pose (@Hrhophi d) as Hp; rewrite Hd in Hp; apply Hp; lia.
apply Habcd.
Qed.
Helper for working with nested quantifiers
Lemma IB_emplace_forall rho n i :
(forall f, (fun k => if k <? n then f (k) else rho (k-n)) ⊨ i)
-> rho ⊨ emplace_forall n i.
Proof.
intros H.
induction n as [|n IH] in rho,H|-*.
- cbn. eapply (sat_ext IB (rho := rho) (xi:=fun k => rho(k-0))).
2: apply (H (fun _ => Num 0)).
intros x. now rewrite Nat.sub_0_r.
- intros d.
specialize (IH (d.:rho)). apply IH. intros f.
eapply (sat_ext IB (xi:=fun k => if k <? S n
then (fun kk => if kk =? n then d
else f kk) k else (rho) (k - S n))).
2: eapply H.
intros x.
destruct (Nat.eq_dec x n) as [Hxn|Hnxn].
+ destruct (Nat.ltb_ge x n) as [_ Hlt]. rewrite Hlt. 2:lia. clear Hlt.
destruct (Nat.ltb_lt x (S n)) as [_ Hlt]. rewrite Hlt. 2:lia. clear Hlt. cbn.
assert (x-n=0) as ->. 1: lia. cbn. destruct (Nat.eqb_eq x n) as [_ HH]. now rewrite HH.
+ destruct (x <? n) eqn:Hneq.
* destruct (Nat.ltb_lt x n) as [Hlt _]. apply Hlt in Hneq. clear Hlt.
destruct (Nat.ltb_lt x (S n)) as [_ Hlt]. rewrite Hlt. 2:lia. clear Hlt.
cbn. destruct (Nat.eqb_neq x n) as [_ HH]. rewrite HH. 1: easy. lia.
* destruct (Nat.ltb_ge x n) as [Hlt _]. apply Hlt in Hneq. clear Hlt.
destruct (Nat.ltb_ge x (S n)) as [_ Hlt]. rewrite Hlt. 2:lia. clear Hlt.
assert (x-n=S(x-S n)) as ->. 1:lia. easy.
Qed.
Opaque emplace_forall.
Final utility lemma: translate the entire list of constraints
Lemma IB_translate_rec rho phi f e hv : rho_descr_phi rho phi hv
-> (rho ⊨ f <-> dom_rel (rho (1+hv)) (rho (2+hv)))
-> highest_var_list e < hv
-> ((forall c, In c e -> h10upc_sem phi c) -> rho ⊨ f)
-> rho ⊨ translate_rec f (S hv) e.
Proof.
intros Hrhophi Hsat Hhv H.
induction e as [|eh er IH] in H,Hsat,Hhv|-*.
- apply H. intros l [].
- cbn. intros Hts. apply IH.
+ easy.
+ cbn in Hhv. lia.
+ intros HH. rewrite Hsat. eapply (IB_single_constr (h:=eh)).
* exact Hrhophi.
* pose proof (@highest_var_list_descr (eh::er) eh ltac:(now left)). lia.
* easy.
* intros Hsem. rewrite <- Hsat. apply H. intros c [il|ir]. 2:now apply HH. congruence.
Qed.
We can now extract the constraints from our translate_constraints function
Lemma IB_aux_transport rho : rho 0 = Num 0
-> rho 1 = Num 0
-> rho 2 = Num 1
-> rho ⊨ translate_constraints h10
-> H10UPC_SAT h10.
Proof.
intros Hrho0 Hrho1 Hrho2.
pose ((S (highest_var_list h10))) as h10vars.
unfold translate_constraints. fold h10vars. intros H.
cbn in H. rewrite Hrho1, Hrho2 in H.
apply H.
apply IB_emplace_forall. intros f.
pose (fun n => match (f n) with (Num k) => k | _ => 0 end) as phi.
eapply (IB_translate_rec (e:=h10) (hv:=h10vars) (phi:= phi)).
- intros x HH. destruct (Nat.ltb_lt x h10vars) as [_ Hr]. rewrite Hr. 2:easy.
unfold phi. now destruct (f x).
- cbn -[dom_rel Nat.leb Nat.sub]. easy.
- lia.
- intros HG. cbn -[dom_rel Nat.leb Nat.sub].
destruct (Nat.ltb_ge (S h10vars) h10vars) as [_ H1]. rewrite H1. 2:lia.
destruct (Nat.ltb_ge (S (S h10vars)) h10vars) as [_ H2]. rewrite H2. 2:lia.
assert (S h10vars-h10vars = 1) as ->. 1:lia.
assert (S(S h10vars)-h10vars = 2) as ->. 1:lia.
rewrite Hrho1, Hrho2. cbn. exists phi. easy.
Qed.
To conclude, we can wrap the axioms around it.
Lemma IB_fulfills rho : rho ⊨ F -> H10UPC_SAT h10.
Proof.
intros H. unfold F in H. pose (Num 0 .: Num 0 .: Num 1 .: rho) as nrho.
assert (rho_canon nrho) as nrho_canon.
1: split; easy.
apply (@IB_aux_transport nrho), H.
- easy.
- easy.
- easy.
- now apply IB_F_zero.
- now apply IB_F_succ_left.
- now apply IB_F_succ_right.
Qed.
End InverseTransport.
Proof.
intros H. unfold F in H. pose (Num 0 .: Num 0 .: Num 1 .: rho) as nrho.
assert (rho_canon nrho) as nrho_canon.
1: split; easy.
apply (@IB_aux_transport nrho), H.
- easy.
- easy.
- easy.
- now apply IB_F_zero.
- now apply IB_F_succ_left.
- now apply IB_F_succ_right.
Qed.
End InverseTransport.
If F is valid, h10 has a solution:
Lemma inverseTransport : valid F -> H10UPC_SAT h10.
Proof.
intros H. apply (@IB_fulfills (fun b => Num 0)). apply H.
Qed.
End validity.
Proof.
intros H. apply (@IB_fulfills (fun b => Num 0)). apply H.
Qed.
End validity.
Next is provability. Here we prove that if h10, our H10UPC_SAT instace, has a solution, F is provable.
Again, assume a falsity flag and a problem instance.
The solution to cs
Proof that it actually is a solution
Context (Hφ : forall c, In c h10 -> h10upc_sem φ c).
Instance lt_dec (n m : nat) : dec (n < m). Proof.
apply Compare_dec.lt_dec.
Defined.
Instance le_dec (n m : nat) : dec (n <= m). Proof.
apply Compare_dec.le_dec.
Defined.
Instance lt_dec (n m : nat) : dec (n < m). Proof.
apply Compare_dec.lt_dec.
Defined.
Instance le_dec (n m : nat) : dec (n <= m). Proof.
apply Compare_dec.le_dec.
Defined.
Some useful tactics for manipulating proof contexts.
Ltac var_eq := cbn; f_equal; lia.
Ltac var_cbn := repeat (unfold up,scons,funcomp; cbn).
Ltac doAllE s t := match goal with [ |- ?A ⊢I ?P] => assert (P = t[s..]) as ->; [idtac|eapply AllE] end.
Ltac doAllI n := apply AllI; let H := fresh "H" in
match goal with [ |- map (subst_form ↑) ?A ⊢I ?phi ] => edestruct (@nameless_equiv_all _ _ _ intu A phi) as [n H]; rewrite H; clear H end.
Helper for working with nested forall quantifiers.
Lemma emplace_forall_subst (n:nat) (i:form) sigma : (emplace_forall n i)[sigma] =
emplace_forall n (i[it up n sigma]).
Proof.
induction n as [|n IH] in sigma|-*.
- easy.
- cbn. f_equal. now rewrite IH, <- it_shift.
Qed.
Fixpoint specialize_n (n:nat) (f:nat->nat) (k:nat) :=
match n with 0 => $k
| S n => match k with 0 => $(f 0)
| S k => specialize_n n (fun l => (f (S l))) k end end.
Lemma emplace_forall_elim (n:nat) (i:form) (pos:nat->nat) A :
A ⊢I emplace_forall n i -> A ⊢I (i[specialize_n n pos]).
Proof.
intros Hpr. induction n as [|n IH] in i,pos,Hpr|-*.
- cbn. now rewrite subst_id.
- cbn in Hpr. enough (i[up (specialize_n n (fun l=> (pos(S l))))][$(pos 0)..] = i[specialize_n (S n) pos]) as <-.
+ apply AllE. specialize (IH (∀ i) (fun l => (pos (S l)))). apply IH.
unfold emplace_forall. rewrite <- it_shift. cbn. apply Hpr.
+ rewrite subst_comp. apply subst_ext. intros [|k].
* easy.
* var_cbn. rewrite subst_term_comp. var_cbn. now rewrite subst_term_id.
Qed.
Lemma specialize_n_resolve n f2 a : specialize_n n f2 a
= if Dec (a < n) then $(f2 a) else $(a-n).
Proof.
induction n as [|n IH] in f2,a|-*.
- cbn. var_eq.
- cbn. destruct a as [|a].
+ easy.
+ cbn.
unfold funcomp in IH. cbn in IH.
rewrite IH. do 2 destruct (Dec _). 2,3: exfalso;lia. all:var_eq.
Qed.
emplace_forall n (i[it up n sigma]).
Proof.
induction n as [|n IH] in sigma|-*.
- easy.
- cbn. f_equal. now rewrite IH, <- it_shift.
Qed.
Fixpoint specialize_n (n:nat) (f:nat->nat) (k:nat) :=
match n with 0 => $k
| S n => match k with 0 => $(f 0)
| S k => specialize_n n (fun l => (f (S l))) k end end.
Lemma emplace_forall_elim (n:nat) (i:form) (pos:nat->nat) A :
A ⊢I emplace_forall n i -> A ⊢I (i[specialize_n n pos]).
Proof.
intros Hpr. induction n as [|n IH] in i,pos,Hpr|-*.
- cbn. now rewrite subst_id.
- cbn in Hpr. enough (i[up (specialize_n n (fun l=> (pos(S l))))][$(pos 0)..] = i[specialize_n (S n) pos]) as <-.
+ apply AllE. specialize (IH (∀ i) (fun l => (pos (S l)))). apply IH.
unfold emplace_forall. rewrite <- it_shift. cbn. apply Hpr.
+ rewrite subst_comp. apply subst_ext. intros [|k].
* easy.
* var_cbn. rewrite subst_term_comp. var_cbn. now rewrite subst_term_id.
Qed.
Lemma specialize_n_resolve n f2 a : specialize_n n f2 a
= if Dec (a < n) then $(f2 a) else $(a-n).
Proof.
induction n as [|n IH] in f2,a|-*.
- cbn. var_eq.
- cbn. destruct a as [|a].
+ easy.
+ cbn.
unfold funcomp in IH. cbn in IH.
rewrite IH. do 2 destruct (Dec _). 2,3: exfalso;lia. all:var_eq.
Qed.
We define the notion of a chain.
A chain contains the de Brujin indices at which chain entries are present.
Inductive chain : nat -> Type := chainZ : chain 0
| chainS : forall (h:nat) (n pl pr:nat), chain h -> chain (S h).
Definition height h (c:chain h) := h.
| chainS : forall (h:nat) (n pl pr:nat), chain h -> chain (S h).
Definition height h (c:chain h) := h.
We need to show some "uniqueness" lemmas for our chain, so we need an inversion lemma
Lemma chain_inversion n (c:chain n) : (match n return chain n -> Type
with 0 => fun cc => cc = chainZ |
S nn => fun cc' => {'(n,pl,ph,cc) & cc' = chainS n pl ph cc}
end) c.
Proof.
destruct c as [|m n pl pr c]. 1:easy. exists (n,pl,pr,c). easy.
Qed.
with 0 => fun cc => cc = chainZ |
S nn => fun cc' => {'(n,pl,ph,cc) & cc' = chainS n pl ph cc}
end) c.
Proof.
destruct c as [|m n pl pr c]. 1:easy. exists (n,pl,pr,c). easy.
Qed.
More functions on chains: chainData gets the data for some index, find* is an easier accessor
Fixpoint chainData (h:nat) (c:chain h) (a:nat) := match c with
@chainZ => (0,0,0)
| @chainS _ n pl pr cc => if Dec (h=a) then (n,pl,pr) else chainData cc a end.
Lemma chainData_0 (h:nat) (c:chain h) : chainData c 0 = (0,0,0).
Proof. now induction c as [|h n pl ph cc IH]. Qed.
Definition findNum h (c:chain h) a := let '(n,pl,ph) := chainData c a in n.
Definition findPairLow h (c:chain h) a := let '(n,pl,ph) := chainData c a in pl.
Definition findPairHigh h (c:chain h) a := let '(n,pl,ph) := chainData c a in ph.
Fixpoint chain_exists h (c:chain h) := match c with
@chainZ => N 0 :: nil
| @chainS _ n pl ph cc => N n :: P' pl :: P' ph ::
Pr $pl $0 :: Pr $(findNum cc (height cc)) $pl ::
Pr $ph $0 :: Pr $n $ph ::
Pr $pl $ph :: chain_exists cc end.
Definition intros_defs (a b c e f g:nat) := Pr $e $g :: Pr $f $e :: N g :: N f :: P' e :: Pr $a $c :: Pr $b $a :: N c :: N b :: P' a :: nil.
Definition intros_P (A:list form) (a b c e f g : nat) (i:form) :
(intros_defs a b c e f g ++ A) ⊢I i -> (A ⊢I P a b c (P e f g i)).
Proof. intros H. do 10 apply II. exact H. Qed.
@chainZ => (0,0,0)
| @chainS _ n pl pr cc => if Dec (h=a) then (n,pl,pr) else chainData cc a end.
Lemma chainData_0 (h:nat) (c:chain h) : chainData c 0 = (0,0,0).
Proof. now induction c as [|h n pl ph cc IH]. Qed.
Definition findNum h (c:chain h) a := let '(n,pl,ph) := chainData c a in n.
Definition findPairLow h (c:chain h) a := let '(n,pl,ph) := chainData c a in pl.
Definition findPairHigh h (c:chain h) a := let '(n,pl,ph) := chainData c a in ph.
Fixpoint chain_exists h (c:chain h) := match c with
@chainZ => N 0 :: nil
| @chainS _ n pl ph cc => N n :: P' pl :: P' ph ::
Pr $pl $0 :: Pr $(findNum cc (height cc)) $pl ::
Pr $ph $0 :: Pr $n $ph ::
Pr $pl $ph :: chain_exists cc end.
Definition intros_defs (a b c e f g:nat) := Pr $e $g :: Pr $f $e :: N g :: N f :: P' e :: Pr $a $c :: Pr $b $a :: N c :: N b :: P' a :: nil.
Definition intros_P (A:list form) (a b c e f g : nat) (i:form) :
(intros_defs a b c e f g ++ A) ⊢I i -> (A ⊢I P a b c (P e f g i)).
Proof. intros H. do 10 apply II. exact H. Qed.
Properties about our chain: numbers are N, pl and pr are in relation
Lemma chain_proves_N (h:nat) (c:chain h) (i:nat) : i <= h -> In (N (findNum c i)) (chain_exists c).
Proof.
intros H. induction c as [|h n pl pr cc IH].
- now left.
- destruct (Dec (S h = i)) eqn:Heq.
+ left. unfold findNum. unfold chainData. now rewrite Heq.
+ do 8 right. unfold findNum, chainData. rewrite Heq. apply IH. lia.
Qed.
Lemma chain_proves_rel (h:nat) (c:chain h) (i:nat) : i <= h -> In (Pr $(findPairLow c i) $(findPairHigh c i)) (chain_exists c).
Proof.
intros H. induction c as [|h n pl pr cc IH].
- now left.
- destruct (Dec ((S h) = i)) eqn:Heq.
+ do 7 right. left. unfold findPairLow,findPairHigh,chainData. now rewrite Heq.
+ do 8 right. unfold findPairLow, findPairHigh, chainData. rewrite Heq. apply IH. lia.
Qed.
Proof.
intros H. induction c as [|h n pl pr cc IH].
- now left.
- destruct (Dec (S h = i)) eqn:Heq.
+ left. unfold findNum. unfold chainData. now rewrite Heq.
+ do 8 right. unfold findNum, chainData. rewrite Heq. apply IH. lia.
Qed.
Lemma chain_proves_rel (h:nat) (c:chain h) (i:nat) : i <= h -> In (Pr $(findPairLow c i) $(findPairHigh c i)) (chain_exists c).
Proof.
intros H. induction c as [|h n pl pr cc IH].
- now left.
- destruct (Dec ((S h) = i)) eqn:Heq.
+ do 7 right. left. unfold findPairLow,findPairHigh,chainData. now rewrite Heq.
+ do 8 right. unfold findPairLow, findPairHigh, chainData. rewrite Heq. apply IH. lia.
Qed.
Chains up to h can be lowered to chains up to l for l <= h
Lemma chain_lower (l:nat) (h:nat) (c:chain h): l > 0 -> l <= h -> {cc : chain l & forall k, k <= l -> chainData c k = chainData cc k}.
Proof.
intros Hl Hh. revert c. assert (h=(h-l)+l) as -> by lia. generalize (h-l).
intros dh c. induction dh as [|dh IH].
- now exists c.
- destruct (chain_inversion c) as [[[[n pl] ph] cc] ->]. fold Nat.add in cc.
destruct (IH cc) as [cc' Hcc']. exists cc'.
intros k Hk. cbn [chainData].
destruct (Dec (S dh + l = k)) as [Hf|_].
+ lia.
+ apply Hcc'. lia.
Qed.
Proof.
intros Hl Hh. revert c. assert (h=(h-l)+l) as -> by lia. generalize (h-l).
intros dh c. induction dh as [|dh IH].
- now exists c.
- destruct (chain_inversion c) as [[[[n pl] ph] cc] ->]. fold Nat.add in cc.
destruct (IH cc) as [cc' Hcc']. exists cc'.
intros k Hk. cbn [chainData].
destruct (Dec (S dh + l = k)) as [Hf|_].
+ lia.
+ apply Hcc'. lia.
Qed.
Chains are extensional, defined only by their data
Lemma chain_data_unique (h:nat) (c1 c2 : chain h) : (forall k, k <= h -> chainData c1 k = chainData c2 k) -> c1 = c2.
Proof.
intros Heq. induction c1 as [|h n pl pr cc IHcc].
- refine (match c2 with chainZ => _ end). easy.
- destruct (chain_inversion c2) as [[[[n' pl'] ph'] cc'] ->].
pose proof (Heq (S h) ltac:(lia)) as Heqh. cbn [chainData] in Heqh.
destruct (Dec (S h = S h)) as [_|Hf]; [idtac|lia].
rewrite (IHcc cc').
+ congruence.
+ intros k Hk. specialize (Heq k ltac:(lia)). cbn [chainData] in Heq.
destruct (Dec (S h = k)) as [Ht|Hf]; [lia|easy].
Qed.
Proof.
intros Heq. induction c1 as [|h n pl pr cc IHcc].
- refine (match c2 with chainZ => _ end). easy.
- destruct (chain_inversion c2) as [[[[n' pl'] ph'] cc'] ->].
pose proof (Heq (S h) ltac:(lia)) as Heqh. cbn [chainData] in Heqh.
destruct (Dec (S h = S h)) as [_|Hf]; [idtac|lia].
rewrite (IHcc cc').
+ congruence.
+ intros k Hk. specialize (Heq k ltac:(lia)). cbn [chainData] in Heq.
destruct (Dec (S h = k)) as [Ht|Hf]; [lia|easy].
Qed.
Lowering a chain preserves the hypotheses
Lemma chain_exists_lower (l h :nat) (cl:chain l) (ch:chain h) : l<=h -> (forall k, k <= l -> chainData cl k = chainData ch k)
-> incl (chain_exists cl) (chain_exists ch).
Proof.
intros Hlh. revert ch. assert (h=(h-l)+l) as -> by lia. generalize (h-l) as dh.
intros dh ch Heq. induction dh as [|dh IHdh].
- now rewrite (@chain_data_unique l cl ch).
- destruct (chain_inversion ch) as [[[[n pl] ph] ch'] Hch]; fold Nat.add in *.
rewrite Hch. cbn; do 8 apply incl_tl. apply (IHdh ch').
intros k Hk. rewrite Hch in Heq. specialize (Heq k Hk). cbn [chainData] in Heq.
destruct (Dec (S dh + l =k)) as [Ht|Hf]; [lia|easy].
Qed.
-> incl (chain_exists cl) (chain_exists ch).
Proof.
intros Hlh. revert ch. assert (h=(h-l)+l) as -> by lia. generalize (h-l) as dh.
intros dh ch Heq. induction dh as [|dh IHdh].
- now rewrite (@chain_data_unique l cl ch).
- destruct (chain_inversion ch) as [[[[n pl] ph] ch'] Hch]; fold Nat.add in *.
rewrite Hch. cbn; do 8 apply incl_tl. apply (IHdh ch').
intros k Hk. rewrite Hch in Heq. specialize (Heq k Hk). cbn [chainData] in Heq.
destruct (Dec (S dh + l =k)) as [Ht|Hf]; [lia|easy].
Qed.
Chain hypotheses prove all needed lemmata
Lemma chain_proves_P_Low (h:nat) (c:chain h) (i:nat) A f : h > 0 -> i < h -> incl (chain_exists c) A
-> A ⊢I P (findPairLow c (S i)) (findNum c i) 0 f -> A ⊢I f.
Proof.
intros Hh Hi HA Hpf.
unfold P in Hpf.
destruct (@chain_lower (S i) _ c) as [cc Hcc]. 1-2:lia.
pose proof (@chain_exists_lower (S i) h cc c ltac:(lia)) as Hlower.
eapply IE. 1:eapply IE. 1:eapply IE. 1:eapply IE. 1:eapply IE.
1: unfold findPairLow, findNum in Hpf; apply Hpf.
all: apply Ctx, HA.
3: {pose proof (@chain_proves_N h c 0) as H0. unfold findNum in H0. rewrite chainData_0 in H0. apply H0. lia. }
all: rewrite Hcc; [apply Hlower; [intros k Hk;symmetry;now apply Hcc|idtac]|lia].
2: apply chain_proves_N; lia.
all: destruct (chain_inversion cc) as [[[[n pl] ph] ch'] Hch]; subst cc; cbn [chain_exists chainData].
- do 1 right. left. destruct (Dec _); [easy|lia].
- do 4 right. left. rewrite Hcc. 2:lia. unfold chainData. do 2 destruct (Dec _); easy + lia.
- do 3 right. left. destruct (Dec _). 1:easy. lia.
Qed.
Lemma chain_proves_P_High (h:nat) (c:chain h) (i:nat) A f : h > 0 -> i < h -> incl (chain_exists c) A
-> A ⊢I P (findPairHigh c (S i)) (findNum c (S i)) 0 f -> A ⊢I f.
Proof.
intros Hh Hi HA Hpf.
unfold P in Hpf.
destruct (@chain_lower (S i) _ c) as [cc Hcc]. 1-2:lia.
pose proof (@chain_exists_lower (S i) h cc c ltac:(lia)) as Hlower.
eapply IE. 1:eapply IE. 1:eapply IE. 1:eapply IE. 1:eapply IE.
1: unfold findPairHigh, findNum in Hpf; apply Hpf.
all: apply Ctx, HA.
3: {pose proof (@chain_proves_N h c 0) as H0. unfold findNum in H0. rewrite chainData_0 in H0. apply H0. lia. }
all: rewrite Hcc; [apply Hlower; [intros k Hk;symmetry;now apply Hcc|idtac]|lia].
2: apply chain_proves_N; lia.
all: destruct (chain_inversion cc) as [[[[n pl] ph] ch'] Hch]; subst cc; cbn [chain_exists chainData].
- do 2 right. left. destruct (Dec _); [easy|lia].
- do 6 right. left. destruct (Dec _); [easy|lia].
- do 5 right. left. destruct (Dec _); [easy|lia].
Qed.
Lemma chain_proves_E_rel (h a : nat) (c:chain h) A f : S a <= h -> incl (chain_exists c) A -> A ⊢I rel (findPairLow c (S a)) (findPairHigh c (S a)) (findNum c a) 0 (findNum c (S a)) 0 f -> A ⊢I f.
Proof.
intros Ha HA Hpr.
eapply IE.
2: eapply Ctx, HA, (@chain_proves_rel _ _ (S a)); lia.
unfold rel in Hpr.
apply (@chain_proves_P_High h c a). 1-2:lia. 1:easy.
apply (@chain_proves_P_Low h c a). 1-2:lia. 1:easy.
exact Hpr.
Qed.
-> A ⊢I P (findPairLow c (S i)) (findNum c i) 0 f -> A ⊢I f.
Proof.
intros Hh Hi HA Hpf.
unfold P in Hpf.
destruct (@chain_lower (S i) _ c) as [cc Hcc]. 1-2:lia.
pose proof (@chain_exists_lower (S i) h cc c ltac:(lia)) as Hlower.
eapply IE. 1:eapply IE. 1:eapply IE. 1:eapply IE. 1:eapply IE.
1: unfold findPairLow, findNum in Hpf; apply Hpf.
all: apply Ctx, HA.
3: {pose proof (@chain_proves_N h c 0) as H0. unfold findNum in H0. rewrite chainData_0 in H0. apply H0. lia. }
all: rewrite Hcc; [apply Hlower; [intros k Hk;symmetry;now apply Hcc|idtac]|lia].
2: apply chain_proves_N; lia.
all: destruct (chain_inversion cc) as [[[[n pl] ph] ch'] Hch]; subst cc; cbn [chain_exists chainData].
- do 1 right. left. destruct (Dec _); [easy|lia].
- do 4 right. left. rewrite Hcc. 2:lia. unfold chainData. do 2 destruct (Dec _); easy + lia.
- do 3 right. left. destruct (Dec _). 1:easy. lia.
Qed.
Lemma chain_proves_P_High (h:nat) (c:chain h) (i:nat) A f : h > 0 -> i < h -> incl (chain_exists c) A
-> A ⊢I P (findPairHigh c (S i)) (findNum c (S i)) 0 f -> A ⊢I f.
Proof.
intros Hh Hi HA Hpf.
unfold P in Hpf.
destruct (@chain_lower (S i) _ c) as [cc Hcc]. 1-2:lia.
pose proof (@chain_exists_lower (S i) h cc c ltac:(lia)) as Hlower.
eapply IE. 1:eapply IE. 1:eapply IE. 1:eapply IE. 1:eapply IE.
1: unfold findPairHigh, findNum in Hpf; apply Hpf.
all: apply Ctx, HA.
3: {pose proof (@chain_proves_N h c 0) as H0. unfold findNum in H0. rewrite chainData_0 in H0. apply H0. lia. }
all: rewrite Hcc; [apply Hlower; [intros k Hk;symmetry;now apply Hcc|idtac]|lia].
2: apply chain_proves_N; lia.
all: destruct (chain_inversion cc) as [[[[n pl] ph] ch'] Hch]; subst cc; cbn [chain_exists chainData].
- do 2 right. left. destruct (Dec _); [easy|lia].
- do 6 right. left. destruct (Dec _); [easy|lia].
- do 5 right. left. destruct (Dec _); [easy|lia].
Qed.
Lemma chain_proves_E_rel (h a : nat) (c:chain h) A f : S a <= h -> incl (chain_exists c) A -> A ⊢I rel (findPairLow c (S a)) (findPairHigh c (S a)) (findNum c a) 0 (findNum c (S a)) 0 f -> A ⊢I f.
Proof.
intros Ha HA Hpr.
eapply IE.
2: eapply Ctx, HA, (@chain_proves_rel _ _ (S a)); lia.
unfold rel in Hpr.
apply (@chain_proves_P_High h c a). 1-2:lia. 1:easy.
apply (@chain_proves_P_Low h c a). 1-2:lia. 1:easy.
exact Hpr.
Qed.
Helper definition erel_i, along with utility lemmata.
Definition erel_i (a b c d t : nat) := (∀ ∀ P 0 (2+a) (2+b)
(P 1 (2+c) (2+d)
(Pr $0 $1 --> wFalse (2+t)))).
Definition erel_findNum (a b c d h:nat) (cc:chain h):= erel_i (findNum cc a) (findNum cc b) (findNum cc c) (findNum cc d) (1).
Lemma erel_findNum_II (a b c d h: nat) (cc:chain h) A : (erel_findNum a b c d cc :: A) ⊢I wFalse 1 -> A ⊢I erel (findNum cc a) (findNum cc b) (findNum cc c) (findNum cc d) 1.
Proof. intros H. apply II. exact H. Qed.
Definition erel_findNum_H (a b c d pl pr h : nat) (cc:chain h):list form :=
Pr $pl $pr
:: Pr $pr $(findNum cc d)
:: Pr $(findNum cc c) $pr
:: N (findNum cc d)
:: N (findNum cc c)
:: P' pr
:: Pr $pl $(findNum cc b)
:: Pr $(findNum cc a) $pl
:: N (findNum cc b)
:: N (findNum cc a)
:: P' pl :: nil.
Lemma erel_findNum_ExI (a b c d h : nat) (cc:chain h) A :
(forall pl pr, (erel_findNum_H a b c d pl pr cc ++ A) ⊢I wFalse 1) -> A ⊢I erel_findNum a b c d cc .
Proof.
intros Hpr. unfold erel_findNum, erel_i.
doAllI pr. cbn [subst_form]. doAllI pl.
cbn.
do 11 apply II. eapply Weak. 1: apply (Hpr pl pr).
apply incl_app.
- unfold erel_findNum_H. now repeat apply ListAutomation.incl_shift.
- now do 11 apply incl_tl.
Qed.
Lemma erel_findNum_H_E (a b c d pl pr h : nat) (cc:chain h) A f :
incl (erel_findNum_H a b c d pl pr cc) A
-> A ⊢I rel pl pr (findNum cc a) (findNum cc b) (findNum cc c) (findNum cc d) f
-> A ⊢I f.
Proof.
intros HA Hpr.
let rec rep n := match n with 0 => now left | S ?nn => right; rep nn end in
let rec f n k := match n with 0 => apply Hpr | S ?nn => eapply IE; [f nn (S k)|apply Ctx, HA; rep k] end in f 11 0.
Qed.
Lemma erel_i_subst (a b c d t:nat) s ss : (forall n,s n = $(ss n)) -> (ss (S t)) = S(ss t) -> (erel_i a b c d t --> wFalse t)[s] = erel_i (ss a) (ss b) (ss c) (ss d) (ss t) --> wFalse (ss t).
Proof.
intros H Hs. cbn. unfold erel_i,P,N,P',funcomp. rewrite ! H. do 20 f_equal. all: cbn; rewrite Hs; easy.
Qed.
Lemma erel_ereli (a b c d t:nat) : erel a b c d t = erel_i a b c d t --> wFalse t.
Proof. easy. Qed.
Fixpoint subst_list (l:list nat) (n:nat) := match l with nil => n | lx::lr => match n with 0 => lx | S n => subst_list lr n end end.
Lemma emplace_forall_shift (n : nat) (f:form) : emplace_forall n (∀ f) = emplace_forall (S n) f.
Proof. unfold emplace_forall. now rewrite it_shift. Qed.
Lemma specialize_list (H f:form) (l:list nat) (n:nat) :
length l = n
-> (H[subst_list l >> var]:: nil) ⊢I f
-> (emplace_forall n H::nil) ⊢I f.
Proof.
induction l as [|lx lr IH] in n,H|-*.
- intros <-. cbn. now erewrite subst_id.
- intros <- Hpr. cbn [length]. specialize (IH (∀ H) (length lr) eq_refl).
cbn in IH. rewrite emplace_forall_shift in IH.
eapply IH, IE.
+ apply Weak with nil. 2:easy. apply II, Hpr.
+ assert (H[up (subst_list lr >> var)][$lx..] = H[subst_list (lx :: lr) >> var]) as <-.
* rewrite subst_comp. apply subst_ext. now intros [|n].
* apply AllE, Ctx. now left.
Qed.
(P 1 (2+c) (2+d)
(Pr $0 $1 --> wFalse (2+t)))).
Definition erel_findNum (a b c d h:nat) (cc:chain h):= erel_i (findNum cc a) (findNum cc b) (findNum cc c) (findNum cc d) (1).
Lemma erel_findNum_II (a b c d h: nat) (cc:chain h) A : (erel_findNum a b c d cc :: A) ⊢I wFalse 1 -> A ⊢I erel (findNum cc a) (findNum cc b) (findNum cc c) (findNum cc d) 1.
Proof. intros H. apply II. exact H. Qed.
Definition erel_findNum_H (a b c d pl pr h : nat) (cc:chain h):list form :=
Pr $pl $pr
:: Pr $pr $(findNum cc d)
:: Pr $(findNum cc c) $pr
:: N (findNum cc d)
:: N (findNum cc c)
:: P' pr
:: Pr $pl $(findNum cc b)
:: Pr $(findNum cc a) $pl
:: N (findNum cc b)
:: N (findNum cc a)
:: P' pl :: nil.
Lemma erel_findNum_ExI (a b c d h : nat) (cc:chain h) A :
(forall pl pr, (erel_findNum_H a b c d pl pr cc ++ A) ⊢I wFalse 1) -> A ⊢I erel_findNum a b c d cc .
Proof.
intros Hpr. unfold erel_findNum, erel_i.
doAllI pr. cbn [subst_form]. doAllI pl.
cbn.
do 11 apply II. eapply Weak. 1: apply (Hpr pl pr).
apply incl_app.
- unfold erel_findNum_H. now repeat apply ListAutomation.incl_shift.
- now do 11 apply incl_tl.
Qed.
Lemma erel_findNum_H_E (a b c d pl pr h : nat) (cc:chain h) A f :
incl (erel_findNum_H a b c d pl pr cc) A
-> A ⊢I rel pl pr (findNum cc a) (findNum cc b) (findNum cc c) (findNum cc d) f
-> A ⊢I f.
Proof.
intros HA Hpr.
let rec rep n := match n with 0 => now left | S ?nn => right; rep nn end in
let rec f n k := match n with 0 => apply Hpr | S ?nn => eapply IE; [f nn (S k)|apply Ctx, HA; rep k] end in f 11 0.
Qed.
Lemma erel_i_subst (a b c d t:nat) s ss : (forall n,s n = $(ss n)) -> (ss (S t)) = S(ss t) -> (erel_i a b c d t --> wFalse t)[s] = erel_i (ss a) (ss b) (ss c) (ss d) (ss t) --> wFalse (ss t).
Proof.
intros H Hs. cbn. unfold erel_i,P,N,P',funcomp. rewrite ! H. do 20 f_equal. all: cbn; rewrite Hs; easy.
Qed.
Lemma erel_ereli (a b c d t:nat) : erel a b c d t = erel_i a b c d t --> wFalse t.
Proof. easy. Qed.
Fixpoint subst_list (l:list nat) (n:nat) := match l with nil => n | lx::lr => match n with 0 => lx | S n => subst_list lr n end end.
Lemma emplace_forall_shift (n : nat) (f:form) : emplace_forall n (∀ f) = emplace_forall (S n) f.
Proof. unfold emplace_forall. now rewrite it_shift. Qed.
Lemma specialize_list (H f:form) (l:list nat) (n:nat) :
length l = n
-> (H[subst_list l >> var]:: nil) ⊢I f
-> (emplace_forall n H::nil) ⊢I f.
Proof.
induction l as [|lx lr IH] in n,H|-*.
- intros <-. cbn. now erewrite subst_id.
- intros <- Hpr. cbn [length]. specialize (IH (∀ H) (length lr) eq_refl).
cbn in IH. rewrite emplace_forall_shift in IH.
eapply IH, IE.
+ apply Weak with nil. 2:easy. apply II, Hpr.
+ assert (H[up (subst_list lr >> var)][$lx..] = H[subst_list (lx :: lr) >> var]) as <-.
* rewrite subst_comp. apply subst_ext. now intros [|n].
* apply AllE, Ctx. now left.
Qed.
We can create a chain up to an arbitrary index
Lemma construct_chain_at (h:nat) HH : (h>0)
-> incl (F_succ_right :: F_succ_left :: F_zero :: nil) HH
-> (forall c:chain h, (chain_exists c ++ HH) ⊢I wFalse 1)
-> HH ⊢I wFalse 1.
Proof.
intros Hn HHH H. induction h as [|h IH].
- exfalso. lia.
- destruct h as [|h].
+ clear IH. apply (IE (phi:=(∀ (∀ (∀ P 2 3 3 (P 0 1 3 (Pr $2 $0 --> wFalse (4)))))))).
* eapply IE.
2: apply Ctx,HHH; do 2 right; now left.
doAllE ($0) (N 0 --> (∀ (∀ (∀ P 2 3 4 (P 0 1 4 (Pr $2 $0 --> wFalse 5))))) --> wFalse (2)).
1: easy.
apply Ctx,HHH. right. now left.
* doAllI pl. doAllI n1. doAllI pr. apply intros_P. cbn -[intros_defs].
apply II.
eapply Weak. 1:apply (H (chainS n1 pl pr chainZ)). apply incl_app.
2: do 11 apply incl_tl; reflexivity.
cbn -[map].
intros f [Hf|[Hf|[Hf|[Hf|[Hf|[Hf|[Hf|[Hf|[Hf|[]]]]]]]]]]; rewrite <- Hf;
let rec find n
:= match n with 0 => now left
| S ?nn => (now left) + (right; find nn) end
in find 11.
+ apply IH; [lia|clear IH]. intros c.
eapply (IE (phi:=(∀ (∀ (∀ P 2 (3+findNum c (S h)) 3
(P 0 1 3 (Pr $2 $0 --> wFalse 4))))))).
* unfold F_succ_left. unfold Not. eapply IE.
2: apply Ctx, in_or_app; left; eapply chain_proves_N; easy.
doAllE ($(findNum c (S h))) (N 0 --> (∀ (∀ (∀ P 2 3 4
(P 0 1 4 (Pr $2 $0 --> wFalse 5))))) --> wFalse 2).
-- easy.
-- apply Ctx. apply in_or_app. right. apply HHH. right. now left.
* doAllI pl. doAllI nh. doAllI pr. apply intros_P. cbn -[intros_defs].
apply II.
eapply Weak. 1:apply (H (chainS nh pl pr c)). apply incl_app.
2: do 11 apply incl_tl; now apply incl_appr.
cbn -[map].
intros f [Hf|[Hf|[Hf|[Hf|[Hf|[Hf|[Hf|[Hf|H1]]]]]]]].
9: do 11 right; apply in_or_app; now left.
all: rewrite <- Hf;
let rec find n
:= match n with 0 => now left
| S ?nn => (now left) + (right; find nn) end
in find 11.
Qed.
-> incl (F_succ_right :: F_succ_left :: F_zero :: nil) HH
-> (forall c:chain h, (chain_exists c ++ HH) ⊢I wFalse 1)
-> HH ⊢I wFalse 1.
Proof.
intros Hn HHH H. induction h as [|h IH].
- exfalso. lia.
- destruct h as [|h].
+ clear IH. apply (IE (phi:=(∀ (∀ (∀ P 2 3 3 (P 0 1 3 (Pr $2 $0 --> wFalse (4)))))))).
* eapply IE.
2: apply Ctx,HHH; do 2 right; now left.
doAllE ($0) (N 0 --> (∀ (∀ (∀ P 2 3 4 (P 0 1 4 (Pr $2 $0 --> wFalse 5))))) --> wFalse (2)).
1: easy.
apply Ctx,HHH. right. now left.
* doAllI pl. doAllI n1. doAllI pr. apply intros_P. cbn -[intros_defs].
apply II.
eapply Weak. 1:apply (H (chainS n1 pl pr chainZ)). apply incl_app.
2: do 11 apply incl_tl; reflexivity.
cbn -[map].
intros f [Hf|[Hf|[Hf|[Hf|[Hf|[Hf|[Hf|[Hf|[Hf|[]]]]]]]]]]; rewrite <- Hf;
let rec find n
:= match n with 0 => now left
| S ?nn => (now left) + (right; find nn) end
in find 11.
+ apply IH; [lia|clear IH]. intros c.
eapply (IE (phi:=(∀ (∀ (∀ P 2 (3+findNum c (S h)) 3
(P 0 1 3 (Pr $2 $0 --> wFalse 4))))))).
* unfold F_succ_left. unfold Not. eapply IE.
2: apply Ctx, in_or_app; left; eapply chain_proves_N; easy.
doAllE ($(findNum c (S h))) (N 0 --> (∀ (∀ (∀ P 2 3 4
(P 0 1 4 (Pr $2 $0 --> wFalse 5))))) --> wFalse 2).
-- easy.
-- apply Ctx. apply in_or_app. right. apply HHH. right. now left.
* doAllI pl. doAllI nh. doAllI pr. apply intros_P. cbn -[intros_defs].
apply II.
eapply Weak. 1:apply (H (chainS nh pl pr c)). apply incl_app.
2: do 11 apply incl_tl; now apply incl_appr.
cbn -[map].
intros f [Hf|[Hf|[Hf|[Hf|[Hf|[Hf|[Hf|[Hf|H1]]]]]]]].
9: do 11 right; apply in_or_app; now left.
all: rewrite <- Hf;
let rec find n
:= match n with 0 => now left
| S ?nn => (now left) + (right; find nn) end
in find 11.
Qed.
Our chain can prove a single constraint
Lemma prove_single (a b c d h: nat) (cc:chain h):
b <= h -> a <= h -> c <= h -> d <= h
-> h10upc_sem_direct ((a,b),(c,d))
-> (chain_exists cc ++ (F_succ_right :: F_succ_left :: F_zero :: nil)) ⊢I Not (erel_findNum a b c d cc) 1.
Proof.
intros Hb. induction b as [|b IH] in h,cc,a,c,d,Hb|-*; intros Ha Hc Hd Habcd.
- cbn in Habcd. assert (c = S a /\ d = 0) as [Hc' Hd']. 1:lia.
rewrite Hc', Hd'. apply II. rewrite Hc' in Hc.
apply (@chain_proves_E_rel h a cc). 1:lia.
1: now apply incl_tl,incl_appl.
eapply Weak with (erel_findNum a 0 (S a) 0 cc::nil). 2:intros k [->|[]]; now left.
unfold erel_findNum, erel_i. change (∀∀ ?e) with (emplace_forall 2 e).
eapply specialize_list with (findPairLow cc (S a)::findPairHigh cc (S a)::nil).
1:easy. unfold findNum. rewrite ! chainData_0. apply Ctx. now left.
- destruct (@h10upc_inv a b c d Habcd) as [c' [d' [Habcd' [Hc' Hd']]]].
rewrite <- Hc', <- Hd' in *.
assert (h10upc_sem_direct ((d',b),(d'+b+1,d'))) as Hdb.
1: split; [now lia|apply Habcd'].
apply erel_findNum_II. eapply IE.
1: eapply Weak; [apply (@IH a c' d' h); easy + lia | now apply incl_tl].
apply erel_findNum_ExI. intros pab pc'd'.
eapply IE.
1: eapply Weak; [apply (@IH d' (d'+b+1) d' h); lia + easy|idtac].
1: now apply incl_appr; apply incl_tl.
apply erel_findNum_ExI. intros pd'b psd'.
apply (IE (phi:=erel_findNum a (S b) (S c') (d' + b + 1) cc)).
2: apply Ctx, in_or_app; right; apply in_or_app; right; now left.
apply (@chain_proves_E_rel h c' cc). 1:lia.
1: now apply incl_appr, incl_appr, incl_tl, incl_appl.
apply (@chain_proves_E_rel h b cc). 1:lia.
1: now apply incl_appr, incl_appr, incl_tl, incl_appl.
apply (@erel_findNum_H_E d' b (d' + b + 1) d' pd'b psd' h cc).
1: now apply incl_appl.
apply (@erel_findNum_H_E a b c' d' pab pc'd' h cc).
1: now apply incl_appr, incl_appl.
apply Weak with (F_succ_right::nil).
2: apply incl_appr, incl_appr, incl_tl, incl_appr; intros k [->|[]]; now left.
unfold F_succ_right. rewrite erel_ereli.
change (∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ ?a) with (emplace_forall 15 a).
pose (
(findNum cc a)
::(findNum cc b)
::(findNum cc c')
::(findNum cc d')
::(findNum cc (d'+b+1))
::(findNum cc (S b))
::(findNum cc (S c'))
::pab::pc'd'::pd'b::psd'
::(findPairLow cc (S b))::(findPairHigh cc (S b))
::(findPairLow cc (S c'))::(findPairHigh cc (S c'))::nil) as mylist.
eapply specialize_list with mylist.
1:easy.
apply Ctx. now left.
Qed.
b <= h -> a <= h -> c <= h -> d <= h
-> h10upc_sem_direct ((a,b),(c,d))
-> (chain_exists cc ++ (F_succ_right :: F_succ_left :: F_zero :: nil)) ⊢I Not (erel_findNum a b c d cc) 1.
Proof.
intros Hb. induction b as [|b IH] in h,cc,a,c,d,Hb|-*; intros Ha Hc Hd Habcd.
- cbn in Habcd. assert (c = S a /\ d = 0) as [Hc' Hd']. 1:lia.
rewrite Hc', Hd'. apply II. rewrite Hc' in Hc.
apply (@chain_proves_E_rel h a cc). 1:lia.
1: now apply incl_tl,incl_appl.
eapply Weak with (erel_findNum a 0 (S a) 0 cc::nil). 2:intros k [->|[]]; now left.
unfold erel_findNum, erel_i. change (∀∀ ?e) with (emplace_forall 2 e).
eapply specialize_list with (findPairLow cc (S a)::findPairHigh cc (S a)::nil).
1:easy. unfold findNum. rewrite ! chainData_0. apply Ctx. now left.
- destruct (@h10upc_inv a b c d Habcd) as [c' [d' [Habcd' [Hc' Hd']]]].
rewrite <- Hc', <- Hd' in *.
assert (h10upc_sem_direct ((d',b),(d'+b+1,d'))) as Hdb.
1: split; [now lia|apply Habcd'].
apply erel_findNum_II. eapply IE.
1: eapply Weak; [apply (@IH a c' d' h); easy + lia | now apply incl_tl].
apply erel_findNum_ExI. intros pab pc'd'.
eapply IE.
1: eapply Weak; [apply (@IH d' (d'+b+1) d' h); lia + easy|idtac].
1: now apply incl_appr; apply incl_tl.
apply erel_findNum_ExI. intros pd'b psd'.
apply (IE (phi:=erel_findNum a (S b) (S c') (d' + b + 1) cc)).
2: apply Ctx, in_or_app; right; apply in_or_app; right; now left.
apply (@chain_proves_E_rel h c' cc). 1:lia.
1: now apply incl_appr, incl_appr, incl_tl, incl_appl.
apply (@chain_proves_E_rel h b cc). 1:lia.
1: now apply incl_appr, incl_appr, incl_tl, incl_appl.
apply (@erel_findNum_H_E d' b (d' + b + 1) d' pd'b psd' h cc).
1: now apply incl_appl.
apply (@erel_findNum_H_E a b c' d' pab pc'd' h cc).
1: now apply incl_appr, incl_appl.
apply Weak with (F_succ_right::nil).
2: apply incl_appr, incl_appr, incl_tl, incl_appr; intros k [->|[]]; now left.
unfold F_succ_right. rewrite erel_ereli.
change (∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ ?a) with (emplace_forall 15 a).
pose (
(findNum cc a)
::(findNum cc b)
::(findNum cc c')
::(findNum cc d')
::(findNum cc (d'+b+1))
::(findNum cc (S b))
::(findNum cc (S c'))
::pab::pc'd'::pd'b::psd'
::(findPairLow cc (S b))::(findPairHigh cc (S b))
::(findPairLow cc (S c'))::(findPairHigh cc (S c'))::nil) as mylist.
eapply specialize_list with mylist.
1:easy.
apply Ctx. now left.
Qed.
This allows us to conclude
Lemma transport_prove : nil ⊢I F (h10:=h10).
Proof using Hφ φ.
unfold F. do 3 apply AllI. cbn. do 4 apply II.
pose ((S (highest_var_list h10))) as h10vars. fold h10vars.
pose (highest_num φ h10vars) as h10max.
pose proof (@highest_num_descr φ h10vars) as Hvars.
fold h10max in Hvars.
eapply (@construct_chain_at (S h10max)).
1:lia. 1:now apply incl_tl. intros cc.
epose proof (@emplace_forall_elim h10vars _ (fun k => findNum cc (φ k))) as Hpr.
eapply IE. 2:eapply Hpr. 2: apply Ctx, in_or_app; right; now left.
eapply Weak. 2: apply incl_app; [apply incl_appl;reflexivity|apply incl_appr,incl_tl;reflexivity].
apply II. clear Hpr.
assert (h10vars >= S( highest_var_list h10)) as Hless.
1: lia.
induction h10 as [|h h10' IHh] in Hvars,Hφ,Hless|-*.
- apply Ctx. left. unfold translate_rec, wFalse, subst_form,Vector.map. do 3 f_equal.
1: change(S h10vars) with (1+h10vars).
all: cbn [subst_term]; rewrite specialize_n_resolve; destruct Dec; lia + f_equal;lia.
- cbn -[Nat.mul h10vars chain_exists subst_form].
apply II in IHh.
2: intros c' Hc; apply Hφ; now right.
2: exact Hvars.
2: cbn in Hless; lia.
eapply IE. 1: eapply Weak. 1: exact IHh.
1: now apply incl_tl.
eapply IE. 1: apply Ctx; left; now cbn [subst_form].
eapply Weak. 2: apply incl_tl; reflexivity.
unfold translate_single. destruct h as [[a b][c d]].
rewrite erel_ereli. clear IHh.
unfold Not. erewrite (@erel_i_subst _ _ _ _ _ _ (fun k : nat => if Dec (k < h10vars) then findNum cc (φ k) else ((k - h10vars)))).
3: repeat destruct Dec; (exfalso;lia) + lia.
2: intros n; rewrite specialize_n_resolve; destruct (Dec _); (exfalso;lia)+var_eq.
destruct (highest_var_descr ((a,b),(c,d))) as [Hlessa [Hlessb [Hlessc Hlessd]]]. cbn in Hless.
do 4 (destruct Dec as [htr|hff]; [clear htr|exfalso;lia]).
do 1 (destruct Dec; [exfalso;lia|idtac]).
assert (forall a,S a - a=1) as -> by (intros;lia).
eapply Weak.
1: eapply (prove_single).
+ specialize (Hvars b ltac:(lia)). lia.
+ specialize (Hvars a ltac:(lia)). lia.
+ specialize (Hvars c ltac:(lia)). lia.
+ specialize (Hvars d ltac:(lia)). lia.
+ apply (@Hφ ((a,b),(c,d))). now left.
+ easy.
Qed.
End ProvabilityTransport.
Proof using Hφ φ.
unfold F. do 3 apply AllI. cbn. do 4 apply II.
pose ((S (highest_var_list h10))) as h10vars. fold h10vars.
pose (highest_num φ h10vars) as h10max.
pose proof (@highest_num_descr φ h10vars) as Hvars.
fold h10max in Hvars.
eapply (@construct_chain_at (S h10max)).
1:lia. 1:now apply incl_tl. intros cc.
epose proof (@emplace_forall_elim h10vars _ (fun k => findNum cc (φ k))) as Hpr.
eapply IE. 2:eapply Hpr. 2: apply Ctx, in_or_app; right; now left.
eapply Weak. 2: apply incl_app; [apply incl_appl;reflexivity|apply incl_appr,incl_tl;reflexivity].
apply II. clear Hpr.
assert (h10vars >= S( highest_var_list h10)) as Hless.
1: lia.
induction h10 as [|h h10' IHh] in Hvars,Hφ,Hless|-*.
- apply Ctx. left. unfold translate_rec, wFalse, subst_form,Vector.map. do 3 f_equal.
1: change(S h10vars) with (1+h10vars).
all: cbn [subst_term]; rewrite specialize_n_resolve; destruct Dec; lia + f_equal;lia.
- cbn -[Nat.mul h10vars chain_exists subst_form].
apply II in IHh.
2: intros c' Hc; apply Hφ; now right.
2: exact Hvars.
2: cbn in Hless; lia.
eapply IE. 1: eapply Weak. 1: exact IHh.
1: now apply incl_tl.
eapply IE. 1: apply Ctx; left; now cbn [subst_form].
eapply Weak. 2: apply incl_tl; reflexivity.
unfold translate_single. destruct h as [[a b][c d]].
rewrite erel_ereli. clear IHh.
unfold Not. erewrite (@erel_i_subst _ _ _ _ _ _ (fun k : nat => if Dec (k < h10vars) then findNum cc (φ k) else ((k - h10vars)))).
3: repeat destruct Dec; (exfalso;lia) + lia.
2: intros n; rewrite specialize_n_resolve; destruct (Dec _); (exfalso;lia)+var_eq.
destruct (highest_var_descr ((a,b),(c,d))) as [Hlessa [Hlessb [Hlessc Hlessd]]]. cbn in Hless.
do 4 (destruct Dec as [htr|hff]; [clear htr|exfalso;lia]).
do 1 (destruct Dec; [exfalso;lia|idtac]).
assert (forall a,S a - a=1) as -> by (intros;lia).
eapply Weak.
1: eapply (prove_single).
+ specialize (Hvars b ltac:(lia)). lia.
+ specialize (Hvars a ltac:(lia)). lia.
+ specialize (Hvars c ltac:(lia)). lia.
+ specialize (Hvars d ltac:(lia)). lia.
+ apply (@Hφ ((a,b),(c,d))). now left.
+ easy.
Qed.
End ProvabilityTransport.
Final reduction transport
Lemma proofTransport : H10UPC_SAT h10 -> nil ⊢I F (h10:=h10).
Proof.
intros [φ Hφ]. eapply transport_prove. exact Hφ.
Qed.
Proof.
intros [φ Hφ]. eapply transport_prove. exact Hφ.
Qed.
Reduction transport for validity, just a special case of the above
Lemma transport : H10UPC_SAT h10 -> valid (F (h10:=h10)).
Proof.
intros Hh10.
intros D I rho.
eapply soundness.
- now apply proofTransport.
- easy.
Qed.
Proof.
intros Hh10.
intros D I rho.
eapply soundness.
- now apply proofTransport.
- easy.
Qed.
Inverse transport, uses standard model from before
Lemma inverseProofTransport : nil ⊢I F (h10:=h10) -> H10UPC_SAT h10.
Proof.
intros H%soundness. apply inverseTransport. intros D I rho.
apply H. easy.
Qed.
End provability.
Proof.
intros H%soundness. apply inverseTransport. intros D I rho.
apply H. easy.
Qed.
End provability.
We also have Kripke validity
Section kripke_validity.
Context {ff : falsity_flag}.
Context {h10 : list h10upc}.
Lemma kripkeTransport : H10UPC_SAT h10 -> kvalid (F (h10:=h10)).
Proof.
intros H.
intros D M u rho. eapply ksoundness with nil.
- now apply proofTransport.
- intros a [].
Qed.
Lemma kripkeInverseTransport : kvalid (F (h10:=h10)) -> H10UPC_SAT h10.
Proof.
intros H. apply inverseTransport.
intros D I rho. apply kripke_tarski. apply H.
Qed.
End kripke_validity.
Context {ff : falsity_flag}.
Context {h10 : list h10upc}.
Lemma kripkeTransport : H10UPC_SAT h10 -> kvalid (F (h10:=h10)).
Proof.
intros H.
intros D M u rho. eapply ksoundness with nil.
- now apply proofTransport.
- intros a [].
Qed.
Lemma kripkeInverseTransport : kvalid (F (h10:=h10)) -> H10UPC_SAT h10.
Proof.
intros H. apply inverseTransport.
intros D I rho. apply kripke_tarski. apply H.
Qed.
End kripke_validity.
We also have classical provability, assuming LEM
Section classical_provability.
Context {ff : falsity_flag}.
Context {h10 : list h10upc}.
Context (LEM : forall P:Prop, P \/ ~P).
Lemma classicalProvabilityTransport : H10UPC_SAT h10 -> nil ⊢C F (h10:=h10).
Proof using LEM.
intros [φ Hφ]. apply intuitionistic_is_classical. eapply transport_prove. exact Hφ.
Qed.
Lemma classicalProvabilityInverseTransport : nil ⊢C F (h10:=h10) -> H10UPC_SAT h10.
Proof using LEM.
intros H%(classical_soundness LEM). apply inverseTransport. intros D I rho.
apply H. easy.
Qed.
End classical_provability.
Context {ff : falsity_flag}.
Context {h10 : list h10upc}.
Context (LEM : forall P:Prop, P \/ ~P).
Lemma classicalProvabilityTransport : H10UPC_SAT h10 -> nil ⊢C F (h10:=h10).
Proof using LEM.
intros [φ Hφ]. apply intuitionistic_is_classical. eapply transport_prove. exact Hφ.
Qed.
Lemma classicalProvabilityInverseTransport : nil ⊢C F (h10:=h10) -> H10UPC_SAT h10.
Proof using LEM.
intros H%(classical_soundness LEM). apply inverseTransport. intros D I rho.
apply H. easy.
Qed.
End classical_provability.
We have satisfiability, if we re-introduce negations
Section satisfiability.
Context {h10 : list h10upc}.
Lemma satisTransport : (~ H10UPC_SAT h10) -> satis ((F (ff:=falsity_on) (h10:=h10)) --> falsity).
Proof.
intros H.
exists dom.
exists (IB (h10:=h10)).
exists (fun _ => Num 0).
intros HF. apply H. eapply IB_fulfills. easy.
Qed.
Lemma satisInverseTransport : satis ((F (ff:=falsity_on) (h10:=h10)) --> falsity) -> (~ H10UPC_SAT h10).
Proof.
intros [D [I [rho HF]]] H.
apply HF, (transport (ff:=falsity_on) H).
Qed.
End satisfiability.
Context {h10 : list h10upc}.
Lemma satisTransport : (~ H10UPC_SAT h10) -> satis ((F (ff:=falsity_on) (h10:=h10)) --> falsity).
Proof.
intros H.
exists dom.
exists (IB (h10:=h10)).
exists (fun _ => Num 0).
intros HF. apply H. eapply IB_fulfills. easy.
Qed.
Lemma satisInverseTransport : satis ((F (ff:=falsity_on) (h10:=h10)) --> falsity) -> (~ H10UPC_SAT h10).
Proof.
intros [D [I [rho HF]]] H.
apply HF, (transport (ff:=falsity_on) H).
Qed.
End satisfiability.
Similarly, we have Kripke satisfiability
Section ksatisfiability.
Context {h10 : list h10upc}.
Lemma ksatisTransport : (~ H10UPC_SAT h10) -> ksatis ((F (ff:=falsity_on) (h10:=h10)) --> falsity).
Proof.
intros H.
exists dom.
pose (kripke_tarski (ff:=falsity_on) (IB (h10:=h10))) as Hk.
exists (interp_kripke (IB (h10:=h10))).
exists tt.
exists (fun _ => Num 0).
rewrite <- Hk.
intros HF. apply H. eapply IB_fulfills. easy.
Qed.
Lemma ksatisInverseTransport : ksatis ((F (ff:=falsity_on) (h10:=h10)) --> falsity) -> (~ H10UPC_SAT h10).
Proof.
intros [D [M [u [rho HF]]]] H.
specialize (HF u). apply HF.
- apply reach_refl.
- apply (kripkeTransport (ff:=falsity_on) H).
Qed.
End ksatisfiability.
Require Import Undecidability.Synthetic.Definitions Undecidability.Synthetic.Undecidability.
Context {h10 : list h10upc}.
Lemma ksatisTransport : (~ H10UPC_SAT h10) -> ksatis ((F (ff:=falsity_on) (h10:=h10)) --> falsity).
Proof.
intros H.
exists dom.
pose (kripke_tarski (ff:=falsity_on) (IB (h10:=h10))) as Hk.
exists (interp_kripke (IB (h10:=h10))).
exists tt.
exists (fun _ => Num 0).
rewrite <- Hk.
intros HF. apply H. eapply IB_fulfills. easy.
Qed.
Lemma ksatisInverseTransport : ksatis ((F (ff:=falsity_on) (h10:=h10)) --> falsity) -> (~ H10UPC_SAT h10).
Proof.
intros [D [M [u [rho HF]]]] H.
specialize (HF u). apply HF.
- apply reach_refl.
- apply (kripkeTransport (ff:=falsity_on) H).
Qed.
End ksatisfiability.
Require Import Undecidability.Synthetic.Definitions Undecidability.Synthetic.Undecidability.
Final collection of undecidability reductions
Section undecResults.
Definition minimalSignature (f:funcs_signature) (p:preds_signature) : Prop :=
match f,p with
{|syms := F; ar_syms := aF|},{|preds := P; ar_preds := aP|}
=> (F -> False) /\ exists pp : P, aP pp = 2
end.
Lemma sig_is_minimal : minimalSignature sig_empty sig_binary.
Proof.
split.
* intros [].
* now exists tt.
Qed.
Theorem validReduction : H10UPC_SAT ⪯ @valid sig_empty sig_binary falsity_off.
Proof.
exists (fun l => @F falsity_off l). split.
* apply transport.
* apply inverseTransport.
Qed.
Theorem satisReduction : complement H10UPC_SAT ⪯ @satis sig_empty sig_binary falsity_on.
Proof.
exists (fun l => @F falsity_on l --> falsity). split.
* apply satisTransport.
* apply satisInverseTransport.
Qed.
Theorem proveReduction : H10UPC_SAT ⪯ (fun (k:@form sig_empty sig_binary frag_operators falsity_off) => nil ⊢M k).
Proof.
exists (fun l => @F falsity_off l). split.
* apply proofTransport.
* apply inverseProofTransport.
Qed.
Theorem classicalProveReduction (LEM : forall P:Prop, P \/ ~P) :
H10UPC_SAT ⪯ (fun (k:@form sig_empty sig_binary frag_operators falsity_off) => nil ⊢C k).
Proof.
exists (fun l => @F falsity_off l). split.
* apply classicalProvabilityTransport, LEM.
* apply classicalProvabilityInverseTransport, LEM.
Qed.
Theorem kripkeValidReduction : H10UPC_SAT ⪯ @kvalid sig_empty sig_binary falsity_off.
Proof.
exists (fun l => @F falsity_off l). split.
* apply kripkeTransport.
* apply kripkeInverseTransport.
Qed.
Theorem kripkeSatisReduction : complement H10UPC_SAT ⪯ @ksatis sig_empty sig_binary falsity_on.
Proof.
exists (fun l => @F falsity_on l --> falsity). split.
* apply ksatisTransport.
* apply ksatisInverseTransport.
Qed.
End undecResults.
Definition minimalSignature (f:funcs_signature) (p:preds_signature) : Prop :=
match f,p with
{|syms := F; ar_syms := aF|},{|preds := P; ar_preds := aP|}
=> (F -> False) /\ exists pp : P, aP pp = 2
end.
Lemma sig_is_minimal : minimalSignature sig_empty sig_binary.
Proof.
split.
* intros [].
* now exists tt.
Qed.
Theorem validReduction : H10UPC_SAT ⪯ @valid sig_empty sig_binary falsity_off.
Proof.
exists (fun l => @F falsity_off l). split.
* apply transport.
* apply inverseTransport.
Qed.
Theorem satisReduction : complement H10UPC_SAT ⪯ @satis sig_empty sig_binary falsity_on.
Proof.
exists (fun l => @F falsity_on l --> falsity). split.
* apply satisTransport.
* apply satisInverseTransport.
Qed.
Theorem proveReduction : H10UPC_SAT ⪯ (fun (k:@form sig_empty sig_binary frag_operators falsity_off) => nil ⊢M k).
Proof.
exists (fun l => @F falsity_off l). split.
* apply proofTransport.
* apply inverseProofTransport.
Qed.
Theorem classicalProveReduction (LEM : forall P:Prop, P \/ ~P) :
H10UPC_SAT ⪯ (fun (k:@form sig_empty sig_binary frag_operators falsity_off) => nil ⊢C k).
Proof.
exists (fun l => @F falsity_off l). split.
* apply classicalProvabilityTransport, LEM.
* apply classicalProvabilityInverseTransport, LEM.
Qed.
Theorem kripkeValidReduction : H10UPC_SAT ⪯ @kvalid sig_empty sig_binary falsity_off.
Proof.
exists (fun l => @F falsity_off l). split.
* apply kripkeTransport.
* apply kripkeInverseTransport.
Qed.
Theorem kripkeSatisReduction : complement H10UPC_SAT ⪯ @ksatis sig_empty sig_binary falsity_on.
Proof.
exists (fun l => @F falsity_on l --> falsity). split.
* apply ksatisTransport.
* apply ksatisInverseTransport.
Qed.
End undecResults.