Require Import List Arith Lia Morphisms Setoid.
From Undecidability.HOU Require Import calculus.calculus.
From Undecidability.HOU Require Import
unification.higher_order_unification unification.nth_order_unification
concon.conservativity_constants concon.conservativity concon.constants.
Import ListNotations.
From Undecidability.HOU Require Import
second_order.diophantine_equations second_order.goldfarb.reduction.
Definition gonly : Const :=
{|
const_type := option False;
ctype := fun o => match o with
| None => alpha → alpha → alpha
| Some f => match f with end
end
|}.
#[global]
Program Instance RE_ag_gonly : retract gonly ag :=
{|
I := fun _ => None;
R := fun x => match x with None => Some None | _ => None end
|}.
Next Obligation.
now destruct x as [[]|].
Qed.
Lemma Goldfarb_remove:
H10 ⪯ OU 2 ag /\ OU 2 ag ⪯ OU 2 gonly.
Proof.
split. eapply Goldfarb.
eapply (@remove_constants_reduction ag gonly); eauto.
intros [[]|]; cbn; eauto.
intros [[[]|]|]; cbn; eauto.
destruct eq_dec; intuition discriminate.
Qed.
Lemma Goldfarb_sharp (C: Const) (re: retract gonly C):
ctype C (I None) = alpha → alpha → alpha -> OU 2 gonly ⪯ OU 2 C.
Proof.
intros. eapply unification_constants_monotone; eauto.
intros [[]|]; cbn; eauto.
Qed.
Definition cfree : Const :=
{|
const_type := False;
ctype := fun f => match f with end
|}.
#[global]
Program Instance RE_cfree X : retract cfree X :=
{|
I := fun f => match f with end;
R := fun x => None
|}.
Lemma Goldfarb_Huet X:
OU 2 gonly ⪯ OU 3 gonly /\
OU 3 gonly ⪯ OU 3 cfree /\
OU 3 cfree ⪯ OU 3 X.
Proof.
repeat split.
eapply unification_step; eauto.
eapply remove_constants_reduction; eauto.
intros []. intros [[]|]; cbn; eauto.
eapply unification_constants_monotone; eauto.
intros [].
Qed.
From Undecidability.HOU Require Import calculus.calculus.
From Undecidability.HOU Require Import
unification.higher_order_unification unification.nth_order_unification
concon.conservativity_constants concon.conservativity concon.constants.
Import ListNotations.
From Undecidability.HOU Require Import
second_order.diophantine_equations second_order.goldfarb.reduction.
Definition gonly : Const :=
{|
const_type := option False;
ctype := fun o => match o with
| None => alpha → alpha → alpha
| Some f => match f with end
end
|}.
#[global]
Program Instance RE_ag_gonly : retract gonly ag :=
{|
I := fun _ => None;
R := fun x => match x with None => Some None | _ => None end
|}.
Next Obligation.
now destruct x as [[]|].
Qed.
Lemma Goldfarb_remove:
H10 ⪯ OU 2 ag /\ OU 2 ag ⪯ OU 2 gonly.
Proof.
split. eapply Goldfarb.
eapply (@remove_constants_reduction ag gonly); eauto.
intros [[]|]; cbn; eauto.
intros [[[]|]|]; cbn; eauto.
destruct eq_dec; intuition discriminate.
Qed.
Lemma Goldfarb_sharp (C: Const) (re: retract gonly C):
ctype C (I None) = alpha → alpha → alpha -> OU 2 gonly ⪯ OU 2 C.
Proof.
intros. eapply unification_constants_monotone; eauto.
intros [[]|]; cbn; eauto.
Qed.
Definition cfree : Const :=
{|
const_type := False;
ctype := fun f => match f with end
|}.
#[global]
Program Instance RE_cfree X : retract cfree X :=
{|
I := fun f => match f with end;
R := fun x => None
|}.
Lemma Goldfarb_Huet X:
OU 2 gonly ⪯ OU 3 gonly /\
OU 3 gonly ⪯ OU 3 cfree /\
OU 3 cfree ⪯ OU 3 X.
Proof.
repeat split.
eapply unification_step; eauto.
eapply remove_constants_reduction; eauto.
intros []. intros [[]|]; cbn; eauto.
eapply unification_constants_monotone; eauto.
intros [].
Qed.