Set Implicit Arguments.
Require Import RelationClasses Morphisms List Lia Init.Nat Setoid.
From Undecidability.HOU Require Import std.std calculus.calculus unification.unification.
From Undecidability.HOU Require Import third_order.pcp third_order.encoding.
Import ListNotations.
Set Default Proof Using "Type".
Definition MPCP' '(c, C) :=
exists I, I ⊆ nats (length C) /\
hd c ++ @concat symbol (select I (heads C)) = tl c ++ concat (select I (tails C)).
Lemma MPCP_MPCP' c C: MPCP (c, C) <-> MPCP' (c, c::C).
Proof. firstorder. Qed.
Section SimplifiedReduction.
Variable (X: Const).
Definition redtm (w: word) (W: list word): exp X :=
lambda lambda (enc 0 1 w) (AppR (var 2) (Enc 0 1 W)).
Definition redctx (n: nat) := [Arr (repeat (alpha → alpha) n) alpha].
Lemma redtm_typing w W:
redctx (length W) ⊢(3) redtm w W : (alpha → alpha) → (alpha → alpha) → alpha.
Proof.
unfold redctx; do 3 econstructor.
- eapply enc_typing; eauto.
- eapply AppR_ordertyping;[ eapply Enc_typing|]; simplify;
econstructor; cbn; simplify; eauto.
Qed.
Program Instance MPCP'_to_U P : orduni 3 X :=
{
Gamma₀ := redctx (length (snd P));
s₀ := redtm (hd (fst P)) (heads (snd P));
t₀ := redtm (tl (fst P)) (tails (snd P));
A₀ := (alpha → alpha) → (alpha → alpha) → alpha;
H1₀ := redtm_typing (hd (fst P)) (heads (snd P));
H2₀ := redtm_typing (tl (fst P)) (tails (snd P));
}.
Next Obligation. now simplify. Qed.
Next Obligation. now simplify. Qed.
Lemma MPCP'_U3 P: MPCP' P -> OU 3 X (MPCP'_to_U P).
Proof.
destruct P as [c C]; intros (I & Sub & EQ).
exists [alpha]. exists (finst I (length C) .: var); split.
- intros x A. destruct x as [| [|]]; try discriminate; cbn.
injection 1 as ?; subst.
eapply finst_typing; eauto.
- cbn -[enc]. rewrite !enc_subst_id; eauto.
rewrite !AppR_subst, !Enc_subst_id; eauto.
cbn; rewrite !ren_plus_base, !ren_plus_combine;
change (1 + 1) with 2.
erewrite <-map_length at 1. symmetry.
erewrite <-map_length at 1. erewrite !finst_equivalence.
all: simplify; eauto.
now rewrite <-!enc_app, EQ.
Qed.
Lemma U3_MPCP' P:
OU 3 X (MPCP'_to_U P) -> MPCP' P.
Proof.
destruct P as [c C].
intros (Delta & sigma & T1 & EQ).
specialize (T1 0 (Arr (repeat (alpha → alpha) (length C)) alpha)); mp T1; eauto.
eapply ordertyping_preservation_under_renaming with (delta := add 2) (Delta := alpha :: alpha :: Delta) in T1.
2: intros ??; cbn; eauto.
eapply main_lemma with (u := 0) (v := 1) in T1 as (I & S & H); eauto.
2, 3: intros (?&?&?) % vars_ren; discriminate.
exists I. intuition.
revert EQ. cbn -[enc]. rewrite !enc_subst_id; eauto.
rewrite !AppR_subst; rewrite ?Enc_subst_id; eauto; cbn -[add].
all: unfold funcomp; cbn -[add]; rewrite !ren_plus_base, !ren_plus_combine;
change (1 + 1) with 2.
specialize (H (heads C)) as H1; mp H1; simplify; eauto.
specialize (H (tails C)) as H2; mp H2; simplify; eauto.
destruct H1 as [t' [-> H1]], H2 as [t'' [-> H2]].
rewrite <-!select_map, !enc_concat, <-!enc_app.
intros EQ % equiv_lam_elim % equiv_lam_elim.
eapply enc_eq in EQ. 1 - 2: intuition. lia.
all: intros s; try eapply H1; try eapply H2.
Qed.
End SimplifiedReduction.
Lemma MPCP_U3 X: MPCP ⪯ OU 3 X.
Proof.
exists (fun '(c, C) => MPCP'_to_U X (c, c::C)). intros [c C]; rewrite MPCP_MPCP'; split.
all: eauto using MPCP'_U3, U3_MPCP'.
Qed.
Require Import RelationClasses Morphisms List Lia Init.Nat Setoid.
From Undecidability.HOU Require Import std.std calculus.calculus unification.unification.
From Undecidability.HOU Require Import third_order.pcp third_order.encoding.
Import ListNotations.
Set Default Proof Using "Type".
Definition MPCP' '(c, C) :=
exists I, I ⊆ nats (length C) /\
hd c ++ @concat symbol (select I (heads C)) = tl c ++ concat (select I (tails C)).
Lemma MPCP_MPCP' c C: MPCP (c, C) <-> MPCP' (c, c::C).
Proof. firstorder. Qed.
Section SimplifiedReduction.
Variable (X: Const).
Definition redtm (w: word) (W: list word): exp X :=
lambda lambda (enc 0 1 w) (AppR (var 2) (Enc 0 1 W)).
Definition redctx (n: nat) := [Arr (repeat (alpha → alpha) n) alpha].
Lemma redtm_typing w W:
redctx (length W) ⊢(3) redtm w W : (alpha → alpha) → (alpha → alpha) → alpha.
Proof.
unfold redctx; do 3 econstructor.
- eapply enc_typing; eauto.
- eapply AppR_ordertyping;[ eapply Enc_typing|]; simplify;
econstructor; cbn; simplify; eauto.
Qed.
Program Instance MPCP'_to_U P : orduni 3 X :=
{
Gamma₀ := redctx (length (snd P));
s₀ := redtm (hd (fst P)) (heads (snd P));
t₀ := redtm (tl (fst P)) (tails (snd P));
A₀ := (alpha → alpha) → (alpha → alpha) → alpha;
H1₀ := redtm_typing (hd (fst P)) (heads (snd P));
H2₀ := redtm_typing (tl (fst P)) (tails (snd P));
}.
Next Obligation. now simplify. Qed.
Next Obligation. now simplify. Qed.
Lemma MPCP'_U3 P: MPCP' P -> OU 3 X (MPCP'_to_U P).
Proof.
destruct P as [c C]; intros (I & Sub & EQ).
exists [alpha]. exists (finst I (length C) .: var); split.
- intros x A. destruct x as [| [|]]; try discriminate; cbn.
injection 1 as ?; subst.
eapply finst_typing; eauto.
- cbn -[enc]. rewrite !enc_subst_id; eauto.
rewrite !AppR_subst, !Enc_subst_id; eauto.
cbn; rewrite !ren_plus_base, !ren_plus_combine;
change (1 + 1) with 2.
erewrite <-map_length at 1. symmetry.
erewrite <-map_length at 1. erewrite !finst_equivalence.
all: simplify; eauto.
now rewrite <-!enc_app, EQ.
Qed.
Lemma U3_MPCP' P:
OU 3 X (MPCP'_to_U P) -> MPCP' P.
Proof.
destruct P as [c C].
intros (Delta & sigma & T1 & EQ).
specialize (T1 0 (Arr (repeat (alpha → alpha) (length C)) alpha)); mp T1; eauto.
eapply ordertyping_preservation_under_renaming with (delta := add 2) (Delta := alpha :: alpha :: Delta) in T1.
2: intros ??; cbn; eauto.
eapply main_lemma with (u := 0) (v := 1) in T1 as (I & S & H); eauto.
2, 3: intros (?&?&?) % vars_ren; discriminate.
exists I. intuition.
revert EQ. cbn -[enc]. rewrite !enc_subst_id; eauto.
rewrite !AppR_subst; rewrite ?Enc_subst_id; eauto; cbn -[add].
all: unfold funcomp; cbn -[add]; rewrite !ren_plus_base, !ren_plus_combine;
change (1 + 1) with 2.
specialize (H (heads C)) as H1; mp H1; simplify; eauto.
specialize (H (tails C)) as H2; mp H2; simplify; eauto.
destruct H1 as [t' [-> H1]], H2 as [t'' [-> H2]].
rewrite <-!select_map, !enc_concat, <-!enc_app.
intros EQ % equiv_lam_elim % equiv_lam_elim.
eapply enc_eq in EQ. 1 - 2: intuition. lia.
all: intros s; try eapply H1; try eapply H2.
Qed.
End SimplifiedReduction.
Lemma MPCP_U3 X: MPCP ⪯ OU 3 X.
Proof.
exists (fun '(c, C) => MPCP'_to_U X (c, c::C)). intros [c C]; rewrite MPCP_MPCP'; split.
all: eauto using MPCP'_U3, U3_MPCP'.
Qed.