Require Import CantorPairing Synthetic List.
Import ListNotations.
Definition enumerable__T := Enumerable.
Definition cumulative {X} (L: nat -> list X) :=
forall n, exists A, L (S n) = L n ++ A.
Hint Extern 0 (cumulative _) => intros ?; cbn; eauto : core.
Lemma cum_ge {X} {L: nat -> list X} {n m} :
cumulative L -> m >= n -> exists A, L m = L n ++ A.
Proof.
induction 2 as [|m _ IH].
- exists nil. now rewrite app_nil_r.
- destruct (H m) as (A&->), IH as [B ->].
exists (B ++ A). now rewrite app_assoc.
Qed.
Lemma cum_ge' {X} {L: nat -> list X} {x n m} :
cumulative L -> In x (L n) -> m >= n -> In x (L m).
Proof.
intros ? H [A ->] % (cum_ge (L := L)). apply in_app_iff. eauto. eauto.
Qed.
Definition list_enumerator {X} (L: nat -> list X) (p : X -> Prop) :=
forall x, p x <-> exists m, In x (L m).
Definition list_enumerable {X} (p : X -> Prop) :=
exists L, list_enumerator L p.
Definition list_enumerator__T' X f := forall x : X, exists n : nat, In x (f n).
Notation list_enumerator__T f X := (list_enumerator__T' X f).
Definition list_enumerable__T X := exists f : nat -> list X, list_enumerator__T f X.
Definition inf_list_enumerable__T X := { f : nat -> list X | list_enumerator__T f X }.
Section enumerator_list_enumerator.
Variable X : Type.
Variable p : X -> Prop.
Variables (e : nat -> option X).
Let T (n : nat) : list X := match e n with Some x => [x] | None => [] end.
Lemma enumerator_to_list_enumerator : forall x, (exists n, e n = Some x) <-> (exists n, In x (T n)).
Proof.
split; intros [n H].
- exists n. unfold T. rewrite H. firstorder.
- unfold T in *. destruct (e n) eqn:E. inversion H; subst. eauto. inversion H0. inversion H.
Qed.
End enumerator_list_enumerator.
Lemma enumerable_list_enumerable {X} {p : X -> Prop} :
enumerable p -> list_enumerable p.
Proof.
intros [f Hf]. eexists.
unfold list_enumerator.
intros x. rewrite <- enumerator_to_list_enumerator.
eapply Hf.
Qed.
Lemma enumerable__T_list_enumerable {X} :
enumerable__T X -> list_enumerable__T X.
Proof.
intros [f Hf]. eexists.
unfold list_enumerator.
intros x. rewrite <- enumerator_to_list_enumerator.
eapply Hf.
Qed.
Section enumerator_list_enumerator.
Variable X : Type.
Variables (T : nat -> list X).
Let e (n : nat) : option X :=
let (n, m) := decode n in
nth_error (T n) m.
Lemma list_enumerator_to_enumerator : forall x, (exists n, e n = Some x) <-> (exists n, In x (T n)).
Proof.
split; intros [k H].
- unfold e in *.
destruct (decode k) as (n, m).
exists n. eapply (nth_error_In _ _ H).
- unfold e in *.
eapply In_nth_error in H as [m].
exists (code (k, m)). now rewrite inv_dc, H.
Qed.
End enumerator_list_enumerator.
Import ListNotations.
Definition enumerable__T := Enumerable.
Definition cumulative {X} (L: nat -> list X) :=
forall n, exists A, L (S n) = L n ++ A.
Hint Extern 0 (cumulative _) => intros ?; cbn; eauto : core.
Lemma cum_ge {X} {L: nat -> list X} {n m} :
cumulative L -> m >= n -> exists A, L m = L n ++ A.
Proof.
induction 2 as [|m _ IH].
- exists nil. now rewrite app_nil_r.
- destruct (H m) as (A&->), IH as [B ->].
exists (B ++ A). now rewrite app_assoc.
Qed.
Lemma cum_ge' {X} {L: nat -> list X} {x n m} :
cumulative L -> In x (L n) -> m >= n -> In x (L m).
Proof.
intros ? H [A ->] % (cum_ge (L := L)). apply in_app_iff. eauto. eauto.
Qed.
Definition list_enumerator {X} (L: nat -> list X) (p : X -> Prop) :=
forall x, p x <-> exists m, In x (L m).
Definition list_enumerable {X} (p : X -> Prop) :=
exists L, list_enumerator L p.
Definition list_enumerator__T' X f := forall x : X, exists n : nat, In x (f n).
Notation list_enumerator__T f X := (list_enumerator__T' X f).
Definition list_enumerable__T X := exists f : nat -> list X, list_enumerator__T f X.
Definition inf_list_enumerable__T X := { f : nat -> list X | list_enumerator__T f X }.
Section enumerator_list_enumerator.
Variable X : Type.
Variable p : X -> Prop.
Variables (e : nat -> option X).
Let T (n : nat) : list X := match e n with Some x => [x] | None => [] end.
Lemma enumerator_to_list_enumerator : forall x, (exists n, e n = Some x) <-> (exists n, In x (T n)).
Proof.
split; intros [n H].
- exists n. unfold T. rewrite H. firstorder.
- unfold T in *. destruct (e n) eqn:E. inversion H; subst. eauto. inversion H0. inversion H.
Qed.
End enumerator_list_enumerator.
Lemma enumerable_list_enumerable {X} {p : X -> Prop} :
enumerable p -> list_enumerable p.
Proof.
intros [f Hf]. eexists.
unfold list_enumerator.
intros x. rewrite <- enumerator_to_list_enumerator.
eapply Hf.
Qed.
Lemma enumerable__T_list_enumerable {X} :
enumerable__T X -> list_enumerable__T X.
Proof.
intros [f Hf]. eexists.
unfold list_enumerator.
intros x. rewrite <- enumerator_to_list_enumerator.
eapply Hf.
Qed.
Section enumerator_list_enumerator.
Variable X : Type.
Variables (T : nat -> list X).
Let e (n : nat) : option X :=
let (n, m) := decode n in
nth_error (T n) m.
Lemma list_enumerator_to_enumerator : forall x, (exists n, e n = Some x) <-> (exists n, In x (T n)).
Proof.
split; intros [k H].
- unfold e in *.
destruct (decode k) as (n, m).
exists n. eapply (nth_error_In _ _ H).
- unfold e in *.
eapply In_nth_error in H as [m].
exists (code (k, m)). now rewrite inv_dc, H.
Qed.
End enumerator_list_enumerator.