Lvc.IL.Rename
Require Import List.
Require Export Util Get Drop Var Val Exp Env Map CSet AutoIndTac MoreList OptionMap.
Require Import SetOperations IL AppExpFree.
Set Implicit Arguments.
Fixpoint rename (ϱ:env var) (s:stmt) : stmt :=
match s with
| stmtLet x e s ⇒ stmtLet (ϱ x) (rename_exp ϱ e) (rename ϱ s)
| stmtIf e s t ⇒ stmtIf (rename_op ϱ e) (rename ϱ s) (rename ϱ t)
| stmtApp l Y ⇒ stmtApp l (List.map (rename_op ϱ) Y)
| stmtReturn e ⇒ stmtReturn (rename_op ϱ e)
| stmtFun s t ⇒
stmtFun (List.map (fun Zs ⇒ (lookup_list ϱ (fst Zs), (rename ϱ (snd Zs)))) s) (rename ϱ t)
end.
Require Export Util Get Drop Var Val Exp Env Map CSet AutoIndTac MoreList OptionMap.
Require Import SetOperations IL AppExpFree.
Set Implicit Arguments.
Fixpoint rename (ϱ:env var) (s:stmt) : stmt :=
match s with
| stmtLet x e s ⇒ stmtLet (ϱ x) (rename_exp ϱ e) (rename ϱ s)
| stmtIf e s t ⇒ stmtIf (rename_op ϱ e) (rename ϱ s) (rename ϱ t)
| stmtApp l Y ⇒ stmtApp l (List.map (rename_op ϱ) Y)
| stmtReturn e ⇒ stmtReturn (rename_op ϱ e)
| stmtFun s t ⇒
stmtFun (List.map (fun Zs ⇒ (lookup_list ϱ (fst Zs), (rename ϱ (snd Zs)))) s) (rename ϱ t)
end.
Renaming respects function equivalence
Global Instance rename_morphism
: Proper (@feq _ _ _eq ==> eq ==> eq) rename.
Proof.
unfold Proper, respectful; intros; subst.
sind y0; destruct y0; simpl; f_equal; eauto; try (now rewrite H; eauto);
eauto using rename_op_ext, rename_exp_ext, map_ext_get_eq2; eauto.
- eapply map_ext_get_eq2; intros. f_equal; eauto. rewrite H; eauto.
Qed.
Lemma rename_agree ϱ ϱ' s
: agree_on eq (occurVars s) ϱ ϱ'
→ rename ϱ s = rename ϱ' s.
Proof with eauto 50 using rename_op_agree, rename_exp_agree, map_ext_get_eq2 with cset.
intros.
sind s; destruct s; simpl in *; f_equal...
- eapply map_ext_get_eq2; intros. f_equal; eauto.
+ erewrite lookup_list_agree; eauto.
eapply agree_on_incl; eauto.
rewrite <- (get_list_union_map _ H0); eauto with cset.
+ eapply IH; eauto.
eapply agree_on_incl; eauto.
rewrite <- (get_list_union_map _ H0); eauto with cset.
Qed.
Lemma rename_app_expfree ϱ s
: app_expfree s
→ app_expfree (rename ϱ s).
Proof.
induction 1; simpl; econstructor; eauto; intros; inv_get; simpl in *; eauto.
exploit H as IV; eauto. inv IV; simpl. eauto using isVar.
Qed.