Lvc.Liveness.LivenessValidators

Require Import DecSolve IL Annotation Liveness.Liveness TrueLiveness LengthEq.

Instance argsLive_dec Caller Callee Y Z
      : Computable (argsLive Caller Callee Y Z).
Proof.
  decide(length Y = length Z).
  - general induction Y; destruct Z as [|v Z]; isabsurd.
    + left; econstructor.
    + decide (v Callee live_op_sound a Caller);
      edestruct (IHY Caller Callee); try dec_solve; try eassumption;
      try inv an; eauto; try tauto.
  - right; intro. eapply argsLive_length in H. congruence.
Defined.

Local Hint Extern 1 ⇒
match goal with
  [ H : annotation _ _ |- annotation _ _ ] ⇒ inv H; eassumption
end.

Definition live_sound_dec i ZL Lv s slv
      : Computable (live_sound i ZL Lv s slv).
Proof.
  revert i ZL Lv slv.
  sind s; intros; destruct s; destruct slv;
    try solve [dec_right].
  - edestruct (IH s); eauto; [| dec_right ];
    ensure (getAnn slv\{{x}} a);
    ensure (live_exp_sound e a);
    ensure (x getAnn slv); dec_solve.
  - edestruct (IH s1); eauto; [| dec_right ];
    edestruct (IH s2); eauto; [| dec_right ];
    ensure (live_op_sound e a);
    ensure (getAnn slv1 a);
    ensure (getAnn slv2 a); dec_solve.
  - destruct (get_dec Lv (counted l)) as [[blv ?]|?]; [| dec_right];
      destruct (get_dec ZL (counted l)) as [[Z ?]|?]; [| dec_right];
    decide (isImperative i); [ensure ((blv \ of_list Z) a); [|cases in H6; eauto]|];
    ensure ( n y, get Y n y live_op_sound y a);
      ensure (length Y = length Z);
    left; econstructor; eauto; cases; eauto.
  - decide(live_op_sound e a); try dec_solve.
  - edestruct (IH s); eauto; [| dec_solve];
      ensure (length F = length sa);
      ensure (getAnn slv a).
    exploit (@indexwise_R_dec' _ _
                               (fun Zs a0live_sound i (fst F ++ ZL)
                                                     (getAnn sa ++ Lv)
                                                     (snd Zs) a0) F sa).
    intros. eapply IH; eauto.
    destruct H; [| dec_solve].
    exploit (@indexwise_R_dec' _ _
                               (fun Zs a0of_list (fst Zs)[<=]getAnn a0
                                           NoDupA eq (fst Zs)
                                             (if isFunctional i then
                                                getAnn a0 \ of_list (fst Zs)[<=]a
                                              else True)) F sa).
    + intros.
      ensure (of_list (fst a0)[<=]getAnn b).
      ensure (NoDupA _eq (fst a0)).
      cases; [| dec_solve].
      ensure ( getAnn b \ of_list (fst a0)[<=]a); dec_solve.
    + destruct H; dec_solve.
Defined.

Hint Extern 5 ⇒
match goal with
| [ H : ?A = ?B, H' : ?A ?B |- _ ] ⇒ exfalso; eapply H', H
end.

Definition true_live_sound_dec i ZL Lv s slv
      : Computable (true_live_sound i ZL Lv s slv).
Proof.
  revert i ZL Lv slv.
  sind s; intros; destruct s; destruct slv;
    try solve [right; intro A; inversion A].
  - edestruct (IH s); eauto; [| dec_right ];
      ensure (getAnn slv \ singleton x a);
      ensure (x getAnn slv isCall e live_exp_sound e a); dec_solve.
  - ensure (live_op_sound e a);
      ensure (getAnn slv1 a);
      ensure (getAnn slv2 a).
    edestruct (IH s1); eauto; [ | dec_right].
    edestruct (IH s2); eauto; [ | dec_right].
    dec_solve.
  - destruct (get_dec ZL (counted l)) as [[Z ?]|?]; [| dec_right];
    destruct (get_dec Lv (counted l)) as [[blv ?]|?]; [| dec_right];
    ensure (argsLive a blv Y Z).
    exploit argsLive_length; eauto.
    decide (isImperative i); try dec_solve.
    + decide ((blv \ of_list Z) a).
      × left; econstructor; eauto. cases; eauto.
      × dec_right. cases in H7. eauto.
    + left; econstructor; eauto. cases; eauto.
  - ensure (live_op_sound e a). dec_solve.
  - edestruct (IH s); eauto; [| dec_right];
      ensure (length F = length sa);
      ensure (getAnn slv a).
    exploit (@indexwise_R_dec' _ _
                               (fun Zs a0
                                  true_live_sound i (fst F ++ ZL)
                                                  (getAnn sa ++ Lv)
                                                  (snd Zs) a0) F sa).
    intros. eapply IH; eauto. destruct H; [| dec_right].
    decide (isFunctional i); [| left; econstructor; try cases; eauto].
    exploit (@indexwise_R_dec' _ _
                               (fun Zs a0getAnn a0 \ of_list (fst Zs)[<=]a) F sa).
    + intros.
      decide ( getAnn b \ of_list (fst a0)[<=]a).
      left; eauto. right; eauto.
    + destruct H. left; econstructor; try cases; eauto.
      dec_right. cases in H9; eauto.
Defined.