Lvc.Liveness.Liveness
Require Import List Map Env AllInRel Exp Rename.
Require Import IL Annotation AutoIndTac MoreListSet.
Export MoreListSet.
Set Implicit Arguments.
Local Hint Resolve incl_empty minus_incl incl_right incl_left.
Require Import IL Annotation AutoIndTac MoreListSet.
Export MoreListSet.
Set Implicit Arguments.
Local Hint Resolve incl_empty minus_incl incl_right incl_left.
Liveness
Inductive overapproximation : Set
:= Functional | Imperative | FunctionalAndImperative.
Definition isFunctional (o:overapproximation) :=
match o with
| Functional ⇒ true
| FunctionalAndImperative ⇒ true
| _ ⇒ false
end.
Definition isImperative (o:overapproximation) :=
match o with
| Imperative ⇒ true
| FunctionalAndImperative ⇒ true
| _ ⇒ false
end.
Inductive live_sound (i:overapproximation)
: list params → list (set var) → stmt → ann (set var) → Prop :=
| LOpr ZL Lv x e s lv (al:ann (set var))
: live_sound i ZL Lv s al
→ live_exp_sound e lv
→ (getAnn al \ singleton x) ⊆ lv
→ x ∈ getAnn al
→ live_sound i ZL Lv (stmtLet x e s) (ann1 lv al)
| LIf Lv ZL e s1 s2 lv al1 al2
: live_sound i ZL Lv s1 al1
→ live_sound i ZL Lv s2 al2
→ live_op_sound e lv
→ getAnn al1 ⊆ lv
→ getAnn al2 ⊆ lv
→ live_sound i ZL Lv (stmtIf e s1 s2) (ann2 lv al1 al2)
| LGoto ZL Lv l Y lv blv Z
: get ZL (counted l) Z
→ get Lv (counted l) blv
Imperative Liveness requires the globals of a function to be live at the call site
→ (if isImperative i then ((blv \ of_list Z) ⊆ lv) else True)
→ length Y = length Z
→ (∀ n y, get Y n y → live_op_sound y lv)
→ live_sound i ZL Lv (stmtApp l Y) (ann0 lv)
| LReturn ZL Lv e lv
: live_op_sound e lv
→ live_sound i ZL Lv (stmtReturn e) (ann0 lv)
| LLet ZL Lv F t lv als alb
: live_sound i (fst ⊝ F ++ ZL) (getAnn ⊝ als ++ Lv) t alb
→ length F = length als
→ (∀ n Zs a, get F n Zs →
get als n a →
live_sound i (fst ⊝ F ++ ZL) (getAnn ⊝ als ++ Lv) (snd Zs) a)
→ (∀ n Zs a, get F n Zs →
get als n a →
(of_list (fst Zs)) ⊆ getAnn a
∧ NoDupA eq (fst Zs)
∧ (if isFunctional i then (getAnn a \ of_list (fst Zs)) ⊆ lv else True))
→ getAnn alb ⊆ lv
→ live_sound i ZL Lv (stmtFun F t)(annF lv als alb).
→ length Y = length Z
→ (∀ n y, get Y n y → live_op_sound y lv)
→ live_sound i ZL Lv (stmtApp l Y) (ann0 lv)
| LReturn ZL Lv e lv
: live_op_sound e lv
→ live_sound i ZL Lv (stmtReturn e) (ann0 lv)
| LLet ZL Lv F t lv als alb
: live_sound i (fst ⊝ F ++ ZL) (getAnn ⊝ als ++ Lv) t alb
→ length F = length als
→ (∀ n Zs a, get F n Zs →
get als n a →
live_sound i (fst ⊝ F ++ ZL) (getAnn ⊝ als ++ Lv) (snd Zs) a)
→ (∀ n Zs a, get F n Zs →
get als n a →
(of_list (fst Zs)) ⊆ getAnn a
∧ NoDupA eq (fst Zs)
∧ (if isFunctional i then (getAnn a \ of_list (fst Zs)) ⊆ lv else True))
→ getAnn alb ⊆ lv
→ live_sound i ZL Lv (stmtFun F t)(annF lv als alb).
Lemma live_sound_overapproximation_I ZL Lv s slv
: live_sound FunctionalAndImperative ZL Lv s slv → live_sound Imperative ZL Lv s slv.
Proof.
intros. general induction H; simpl in × |- *; econstructor; simpl; eauto.
- intros. edestruct H3; eauto.
Qed.
Lemma live_sound_overapproximation_F ZL Lv s slv
: live_sound FunctionalAndImperative ZL Lv s slv → live_sound Functional ZL Lv s slv.
Proof.
intros. general induction H; simpl in × |- *; econstructor; simpl; eauto.
Qed.
live_sound ensures that the annotation matches the program
Lemma live_sound_annotation i ZL Lv s slv
: live_sound i ZL Lv s slv → annotation s slv.
Proof.
intros. general induction H; econstructor; eauto.
Qed.
: live_sound i ZL Lv s slv → annotation s slv.
Proof.
intros. general induction H; econstructor; eauto.
Qed.
Lemma incl_incl_minus X `{OrderedType X} s t u v
: t \ u ⊆ v → s ⊆ t → s \ u ⊆ v.
Proof.
intros A B. rewrite B; eauto.
Qed.
Lemma incl_minus_exp_live_union s t e v
: s \ t ⊆ v → live_exp_sound e v → s \ t ∪ Exp.freeVars e ⊆ v.
Proof.
intros. eauto using Exp.freeVars_live with cset.
Qed.
Hint Resolve incl_incl_minus incl_minus_exp_live_union : cset.
Hint Resolve incl_minus_lr : cset.
Lemma live_sound_monotone i ZL LV LV' s lv
: live_sound i ZL LV s lv
→ PIR2 Subset LV' LV
→ live_sound i ZL LV' s lv.
Proof.
intros. general induction H; simpl; eauto using live_sound.
- PIR2_inv.
econstructor; eauto.
cases; eauto with cset.
- econstructor; eauto using PIR2_app.
Qed.
Lemma live_sound_monotone2 i ZL LV s lv a
: live_sound i ZL LV s lv
→ getAnn lv ⊆ a
→ live_sound i ZL LV s (setTopAnn lv a).
Proof.
intros. general induction H; simpl in × |- *;
eauto using live_sound, live_op_sound_incl,
live_exp_sound_incl, Subset_trans with cset.
- econstructor; eauto using live_op_sound_incl.
cases; eauto with cset.
- econstructor; eauto with cset.
+ intros. edestruct H3; dcr; eauto.
cases; eauto with cset.
Qed.
Lemma freeVars_live s lv ZL Lv
: live_sound Functional ZL Lv s lv → IL.freeVars s ⊆ getAnn lv.
Proof.
intros.
induction H; simpl; eauto using Exp.freeVars_live, Op.freeVars_live,
Op.freeVars_live_list with cset.
- eapply union_subset_3; eauto with cset.
+ eapply list_union_incl; intros; inv_get; eauto.
edestruct H3; dcr; eauto; simpl in ×. exploit H2; eauto.
eauto with cset.
Qed.
Lemma adapt_premise F als lv
: (∀ (n : nat) (Zs : params × stmt) (a : ann ⦃var⦄),
get F n Zs →
get als n a →
of_list (fst Zs) ⊆ getAnn a ∧ NoDupA eq (fst Zs) ∧ getAnn a \ of_list (fst Zs) ⊆ lv)
→ ∀ (n0 : nat) (Zs0 : params × stmt) (a : ann ⦃var⦄),
get F n0 Zs0 → get als n0 a → of_list (fst Zs0) ⊆ getAnn a ∧ getAnn a \ of_list (fst Zs0) ⊆ lv.
Proof.
intros A; intros; edestruct A; dcr; eauto.
Qed.
Hint Resolve adapt_premise.
Lemma live_globals_zip (F:〔params×stmt〕) (als:〔ann ⦃var⦄〕) DL ZL (LEN1:length F = length als)
: zip pair (getAnn ⊝ als) (fst ⊝ F) ++ zip pair DL ZL =
zip pair (List.map getAnn als ++ DL) (List.map fst F ++ ZL).
Proof with eauto with len.
rewrite zip_app...
Qed.
Lemma PIR2_Subset_tab_extend AP DL ZL (F:list (params×stmt)) als
: PIR2 Subset AP (DL \\ ZL)
→ ❬F❭ = ❬als❭
→ PIR2 Subset (tab {} ‖F‖ ++ AP) ((getAnn ⊝ als ++ DL) \\ (fst ⊝ F ++ ZL)).
Proof.
intros P LEN.
rewrite zip_app; eauto using PIR2_length with len.
eapply PIR2_app; eauto.
eapply PIR2_get; try (intros ? ? ? GET; inv_map GET); eauto with cset len.
Qed.