Lvc.Spilling.BoundedIn
Definition bounded_in (X : Type) `{OrderedType X} (D : ⦃X⦄) (k : nat)
: ⦃X⦄ → Prop
:= fun a ⇒ cardinal (D ∩ a) ≤ k.
Lemma filter_meet_idem X `{OrderedType X} (p:X → bool) `{Proper _ (_eq ==> eq) p} s
: SetInterface.filter p s ∩ s [=] SetInterface.filter p s.
Proof.
split; cset_tac.
Qed.
Lemma bounded_in_part_bounded X `{OrderedType X} (p:inf_subset X) (VD:set X) k lv
(BND:bounded_in VD k lv)
(AP : For_all (fun x ⇒ p x) VD)
(Incl : lv ⊆ VD)
: part_bounded X p k lv.
Proof.
unfold part_bounded, bounded_in in ×.
rewrite <- (@filter_incl _ _ p) in Incl; eauto.
rewrite <- Incl in BND. rewrite filter_meet_idem in BND; eauto.
Qed.
Lemma ann_P_bounded_in_part_bounded X `{OrderedType X}
(p :inf_subset X) k lv (VD:set X)
(AN:ann_P (bounded_in VD k) lv)
(AP:For_all (inf_subset_P p) VD)
(Incl:ann_P (fun x ⇒ x ⊆ VD) lv)
: ann_P (part_bounded X p k) lv.
Proof.
general induction AN; inv Incl; simpl in *;
econstructor; eauto using bounded_in_part_bounded.
Qed.
: ⦃X⦄ → Prop
:= fun a ⇒ cardinal (D ∩ a) ≤ k.
Lemma filter_meet_idem X `{OrderedType X} (p:X → bool) `{Proper _ (_eq ==> eq) p} s
: SetInterface.filter p s ∩ s [=] SetInterface.filter p s.
Proof.
split; cset_tac.
Qed.
Lemma bounded_in_part_bounded X `{OrderedType X} (p:inf_subset X) (VD:set X) k lv
(BND:bounded_in VD k lv)
(AP : For_all (fun x ⇒ p x) VD)
(Incl : lv ⊆ VD)
: part_bounded X p k lv.
Proof.
unfold part_bounded, bounded_in in ×.
rewrite <- (@filter_incl _ _ p) in Incl; eauto.
rewrite <- Incl in BND. rewrite filter_meet_idem in BND; eauto.
Qed.
Lemma ann_P_bounded_in_part_bounded X `{OrderedType X}
(p :inf_subset X) k lv (VD:set X)
(AN:ann_P (bounded_in VD k) lv)
(AP:For_all (inf_subset_P p) VD)
(Incl:ann_P (fun x ⇒ x ⊆ VD) lv)
: ann_P (part_bounded X p k) lv.
Proof.
general induction AN; inv Incl; simpl in *;
econstructor; eauto using bounded_in_part_bounded.
Qed.