Lvc.Spilling.AnnP
Require Import List Map Env AllInRel Exp AppExpFree RenamedApart.
Require Import IL Annotation AutoIndTac.
Require Import Liveness.Liveness LabelsDefined.
Set Implicit Arguments.
Require Import IL Annotation AutoIndTac.
Require Import Liveness.Liveness LabelsDefined.
Set Implicit Arguments.
Inductive ann_P
(A : Type)
(P : A → Prop)
: ann A → Prop
:=
| annP0
(a : A)
: P a
→ ann_P P (ann0 a)
| annP1
(a : A)
(an : ann A)
: P a
→ ann_P P an
→ ann_P P (ann1 a an)
| annP2
(a : A)
(an1 an2 : ann A)
: P a
→ ann_P P an1
→ ann_P P an2
→ ann_P P (ann2 a an1 an2)
| ann_PF
(a : A)
(anF : list (ann A))
(an2 : ann A)
: P a
→ (∀ (an1 : ann A) n,
get anF n an1
→ ann_P P an1)
→ ann_P P an2
→ ann_P P (annF a anF an2)
.
Lemma ann_P_get
(A : Type)
(P : A → Prop)
(a : ann A)
:
ann_P P a → P (getAnn a)
.
Proof.
intro annP.
induction annP; eauto.
Qed.
Instance ann_P_impl A
: Proper (@pointwise_relation _ _ impl ==> eq ==> impl) (@ann_P A).
Proof.
unfold Proper, respectful, impl; intros; subst.
general induction H1; eauto using ann_P.
Qed.
Instance ann_P_iff A
: Proper (@pointwise_relation _ _ iff ==> eq ==> iff) (@ann_P A).
Proof.
unfold Proper, respectful, impl; intros; subst; split; intros.
eapply ann_P_impl; eauto.
eapply pointwise_subrelation; eauto using iff_impl_subrelation.
eapply ann_P_impl; eauto.
eapply pointwise_subrelation; eauto using iff_impl_subrelation.
eapply pointwise_symmetric; eauto using CRelationClasses.iff_Symmetric.
Qed.
Lemma ann_P_setTopAnn A (P:A→Prop) an a
: ann_P P an
→ P a
→ ann_P P (setTopAnn an a).
Proof.
intros AN PA; inv AN; simpl; econstructor; eauto.
Qed.