Lvc.Infra.Position

Require Import CSet LengthEq Option Map OrderedTypeEx Util List Get Computable DecSolve AllInRel.

Set Implicit Arguments.

Unset Printing Abstraction Types.

Fixpoint pos X `{OrderedType X} (l:list X) (x:X) (n:nat) : option nat :=
  match l with
    | nilNone
    | y::lif [ x === y ] then Some n else pos l x (S n)
  end.

Lemma pos_add X `{OrderedType X} k' symb (f:X) k i
: pos symb f k = Some i pos symb f (k' + k) = Some (k' + i).
Proof.
  general induction symb; eauto.
  unfold pos in *; fold pos in ×.
  cases. congruence.
  eapply IHsymb in H0. orewrite (S (k' + k) = k' + S k). eauto.
Qed.

Lemma pos_sub X `{OrderedType X} k' symb (f:X) k i
: pos symb f (k' + k) = Some (k' + i) pos symb f k = Some i.
Proof.
  general induction symb; eauto.
  unfold pos in *; fold pos in ×.
  cases. f_equal. inv H0. omega.
  orewrite (S (k' + k) = k' + S k) in H0.
  eauto.
Qed.

Lemma pos_ge X `{OrderedType X} symb (l:X) i k
: pos symb l k = Some i
   k i.
Proof.
  general induction symb. unfold pos in H0; fold pos in H0.
  cases in H0. omega.
  exploit IHsymb; eauto. omega.
Qed.

Lemma pos_sub' X `{OrderedType X} k' symb (f:X) k i
: pos symb f k = Some i k' k pos symb f (k - k') = Some (i - k').
Proof.
  intros.
  eapply pos_sub.
  instantiate (1:=k').
  orewrite (k' + (k - k') = k).
  exploit pos_ge; eauto.
  orewrite (k' + (i - k') = i). eauto.
Qed.

Lemma update_with_list_lookup_in_list_first X `{OrderedType X} B E n
      (Z:list X) (Y:list B) z
: length Z = length Y
   get Z n z
   ( n' z', n' < n get Z n' z' z' =/= z)
   y, get Y n y E [Z <-- Y] z === y.
Proof.
  intros. eapply length_length_eq in H0.
  general induction H0; simpl in *; isabsurd.
  inv H1.
  - y; repeat split; eauto using get. lud. exfalso; eauto.
  - edestruct (IHlength_eq _ E n0 z) as [? [? ]]; eauto using get; dcr.
    + intros. eapply (H2 (S n')); eauto using get. omega.
    + x0. eexists; repeat split; eauto using get.
      exploit (H2 0); eauto using get; try omega.
      lud.
Qed.

Lemma list_lookup_in_list_first X `{OrderedType X} B E
      (Z:list X) (Y:list B) x y
: length Z = length Y
   (E [Z <-- Y]) x = y
   x of_list Z
   n y', get Y n y' y === y' ( n' x', n' < n get Z n' x' x' =/= x).
Proof.
  intros. length_equify.
  general induction H0; simpl in *; isabsurd. decide (x0 === x).
  - 0, y; repeat split; eauto using get. lud. intros; exfalso; omega.
  - cset_tac; intuition.
    edestruct (IHlength_eq _ E x0) as [? [? ]]; eauto using get; dcr.
    + (S x1), x2. repeat split; eauto using get. lud; intuition.
      intros. inv H4. intro; intuition. eapply H6; eauto. omega.
Qed.

Lemma of_list_get_first X `{OrderedType X} (Z:list X) z
: z of_list Z
   n z', get Z n z' z === z' ( n' z', n' < n get Z n' z' z' =/= z).
Proof.
  intros. general induction Z; simpl in ×. cset_tac; intuition.
  decide (z === a).
  - eexists 0, a; repeat split; eauto using get.
    + intros. exfalso. omega.
  - cset_tac; intuition. edestruct IHZ; eauto. dcr.
    eexists (S x), x0; repeat split; eauto using get.
    + intros. inv H4; intro; eauto. eapply H5; eauto. omega.
Qed.

Lemma get_first_pos X `{OrderedType X} n
      (Z:list X) z
: get Z n z
   ( n' z', n' < n get Z n' z' z' =/= z)
   pos Z z 0 = Some n.
Proof.
  intros. general induction H0; simpl; cases; eauto.
  - exfalso. exploit (H1 0); eauto using get. omega.
  - exploit IHget; eauto.
    intros; eapply (H1 (S n')); eauto using get. omega.
    eapply pos_add with (k':=1) in H2. eauto.
Qed.

Lemma pos_get X `{OrderedType X} (symb:list X) v x i
: pos symb v i = x
    v', get symb (x-i) v' v === v' x i.
Proof.
  general induction symb; simpl in × |- *; eauto using get.
  cases in H0.
  - orewrite (x - x = 0). eexists; split; eauto using get.
  - exploit IHsymb; eauto; dcr.
    orewrite (x - i = S (x - S i)).
    eexists; split. econstructor; eauto. split; eauto; omega.
Qed.

Lemma pos_none X `{OrderedType X} symb (x:X) k k'
: pos symb x k = None
   pos symb x k' = None.
Proof.
  general induction symb; eauto; simpl in ×.
  cases; try congruence.
  rewrite H0; eauto.
Qed.

Lemma pos_eq X `{OrderedType X} symb y k
: pos symb y k = Some k
   hd_error symb === Some y.
Proof.
  intros. destruct symb; simpl in *; try cases in H0; simpl; try congruence.
  - constructor. rewrite COND. reflexivity.
  - exfalso. exploit pos_ge; eauto. omega.
Qed.

Lemma pos_indep X `{OrderedType X} symb symb' x y k k'
: pos symb x k = pos symb' y k
   pos symb x k' = pos symb' y k'.
Proof.
  general induction symb.
  - general induction symb'; simpl in *; eauto.
    cases in H0; try congruence; eauto.
  - simpl in ×. cases.
    + symmetry in H0. eapply pos_eq in H0. destruct symb'; simpl in ×.
      inv H0.
      cases; eauto. inv H0; exfalso; eauto.
    + destruct symb'; simpl in ×. eauto using pos_none.
      cases.
      × exfalso. exploit pos_ge; eauto. omega.
      × eauto.
Qed.

Lemma pos_inc X `{OrderedType X} symb symb' x y k k'
: pos symb x k = pos symb' y k
   pos symb x (k' + k) = pos symb' y (k' + k).
Proof.
  intros. eapply pos_indep; eauto.
Qed.

Lemma pos_dec X `{OrderedType X} symb symb' x y k k'
: pos symb x k = pos symb' y k
   pos symb x (k - k') = pos symb' y (k - k').
Proof.
  intros. eapply pos_indep; eauto.
Qed.

Lemma pos_app_in X `{OrderedType X} x k L L'
: x of_list L
   pos (L ++ L') x k = pos L x k.
Proof.
  intros.
  general induction L; simpl in × |- *; cset_tac.
  - cases; try congruence; exfalso; eauto.
  - cases; try congruence; eauto.
Qed.

Lemma pos_app_not_in X `{OrderedType X} x k L L'
: x of_list L
   pos (L ++ L') x k = pos L' x (length L + k).
Proof.
  intros.
  general induction L; simpl in × |- *; cset_tac.
  cases; try congruence; eauto.
  - exfalso; eauto.
  - rewrite IHL; eauto.
Qed.

Require Import Drop.

Lemma pos_get_first X `{OrderedType X} (symb:list X) v x i
: pos symb v i = x
    v', get symb (x-i) v' v === v' x i
      z' n, n < x-i get symb n z' z' =/= v.
Proof.
  general induction symb; simpl in × |- *; eauto using get.
  cases in H0.
  - orewrite (x - x = 0). eexists; repeat split; eauto using get.
    + intros. exfalso. omega.
  - exploit IHsymb; eauto; dcr.
    orewrite (x - i = S (x - S i)).
    eexists; split. econstructor; eauto. repeat split; eauto; try omega.
    + intros. inv H5; intro; eauto. eapply H6; eauto. omega.
Qed.

Instance trivial_pos_instance X `{OrderedType X}
  : Proper (eq ==> eq ==> eq ==> eq) (@pos X _).
Proof.
  unfold Proper, respectful. intros; subst. eauto.
Qed.