Lvc.Infra.Status
Require Import Util LengthEq String List Get.
Set Implicit Arguments.
Inductive status A :=
| Success : A → status A
| Error : string → status A.
Arguments Success [A] _.
Arguments Error [A] _%string.
Definition bind (A B : Type) (f : status A) (g : A → status B) : status B :=
match f with
| Success a ⇒ g a
| Error e ⇒ Error e
end.
Notation "'sdo' X <- A ; B" := (bind A (fun X ⇒ B))
(at level 200, X ident, A at level 100, B at level 200).
Definition option2status {A} : option A → string → status A.
intros [a|]. constructor 1. eapply a.
intros s. eapply (Error s).
Defined.
Lemma option2status_inv {A} o s (v:A)
: option2status o s = Success v
→ o = Some v.
Proof.
destruct o; simpl; inversion 1; eauto.
Qed.
Arguments option2status [A] _ _%string.
Lemma bind_inversion (A B : Type) (f : status A) (g : A → status B) (y : B) :
bind f g = Success y → ∃ x, f = Success x ∧ g x = Success y.
Proof.
destruct f. firstorder. discriminate.
Qed.
Lemma bind_inversion' (A B : Type) (f : status A) (g : A → status B) (y : B) :
bind f g = Success y → { x : A | f = Success x ∧ g x = Success y }.
Proof.
destruct f. firstorder. discriminate.
Qed.
Set Implicit Arguments.
Inductive status A :=
| Success : A → status A
| Error : string → status A.
Arguments Success [A] _.
Arguments Error [A] _%string.
Definition bind (A B : Type) (f : status A) (g : A → status B) : status B :=
match f with
| Success a ⇒ g a
| Error e ⇒ Error e
end.
Notation "'sdo' X <- A ; B" := (bind A (fun X ⇒ B))
(at level 200, X ident, A at level 100, B at level 200).
Definition option2status {A} : option A → string → status A.
intros [a|]. constructor 1. eapply a.
intros s. eapply (Error s).
Defined.
Lemma option2status_inv {A} o s (v:A)
: option2status o s = Success v
→ o = Some v.
Proof.
destruct o; simpl; inversion 1; eauto.
Qed.
Arguments option2status [A] _ _%string.
Lemma bind_inversion (A B : Type) (f : status A) (g : A → status B) (y : B) :
bind f g = Success y → ∃ x, f = Success x ∧ g x = Success y.
Proof.
destruct f. firstorder. discriminate.
Qed.
Lemma bind_inversion' (A B : Type) (f : status A) (g : A → status B) (y : B) :
bind f g = Success y → { x : A | f = Success x ∧ g x = Success y }.
Proof.
destruct f. firstorder. discriminate.
Qed.
Reasoning over monadic computations
H: (do x <- a; b) = OK resBy definition of the bind operation, both computations a and b must succeed for their composition to succeed. The tactic therefore generates the following hypotheses:
Ltac monadS_inv1 H :=
match type of H with
| (Success _ = Success _) ⇒
inversion H; clear H; try subst
| (Error _ = Success _) ⇒
discriminate
| (bind ?F ?G = Success ?X) ⇒
let x := fresh "x" in (
let EQ1 := fresh "EQ" in (
let EQ2 := fresh "EQ" in (
destruct (bind_inversion' F G H) as [x [EQ1 EQ2]];
clear H;
try (monadS_inv1 EQ2))))
end.
Ltac monadS_inv H :=
match type of H with
| (Success _ = Success _) ⇒ monadS_inv1 H
| (Error _ = Success _) ⇒ monadS_inv1 H
| (bind ?F ?G = Success ?X) ⇒ monadS_inv1 H
| (@eq _ (@bind _ _ _ _ _ ?G) (?X)) ⇒
let X := fresh in remember G as X; simpl in H; subst X; monadS_inv1 H
end.
Section ParametricOptionMapIndex.
Variables X Y : Type.
Hypothesis f : nat → X → status Y : Type.
Fixpoint smapi_impl (n:nat) (L:list X) : status (list Y) :=
match L with
| x::L ⇒
sdo v <- f n x;
sdo vl <- smapi_impl (S n) L;
Success (v::vl)
| _ ⇒ Success nil
end.
Definition smapi := smapi_impl 0.
End ParametricOptionMapIndex.
Section ParametricZip.
Variables X Y Z : Type.
Hypothesis f : X → Y → status Z : Type.
Fixpoint szip (L:list X) (L':list Y) : status (list Z) :=
match L, L' with
| x::L, y::L' ⇒
sdo z <- f x y;
sdo ZL <- szip L L';
Success (z::ZL)
| _, _ ⇒ Success nil
end.
End ParametricZip.
Section ParametricStatusMap.
Variables X Y : Type.
Hypothesis f : X → status Y : Type.
Fixpoint smap (L:list X) : status (list Y) :=
match L with
| x::L ⇒
sdo v <- f x;
sdo vl <- smap L;
Success (v::vl)
| _ ⇒ Success nil
end.
Lemma smap_spec L L'
: smap L = Success L'
→ ∀ n x, get L n x → ∃ y, f x = Success y ∧ get L' n y.
Proof.
intros. general induction L; simpl in × |- *; isabsurd.
- monadS_inv H. inv H0; eauto using get.
edestruct IHL; eauto. dcr; eauto using get.
Qed.
Lemma smap_length L L'
: smap L = Success L'
→ length L' = length L.
Proof.
intros. general induction L; simpl in *; try monadS_inv H; simpl; eauto.
Qed.
End ParametricStatusMap.
Lemma smap_agree_2 X X' Y (f: X → status Y) (g: X' → status Y) L L'
: (∀ n x y, get L n x → get L' n y → f x = g y)
→ length L = length L'
→ smap f L = smap g L'.
Proof.
intros. eapply length_length_eq in H0.
general induction H0; simpl; eauto.
erewrite <- H; eauto using get. erewrite IHlength_eq; eauto using get.
Qed.
Lemma szip_length_ass X Y Z (f:X→Y→ status Z) A B C k
: szip f A B = Success C
→ length A = length B
→ length A = k
→ length C = k.
Proof.
intros EQ LEN1 LEN2; subst. length_equify.
general induction LEN1; simpl in *; eauto.
monadS_inv EQ; simpl; eauto.
Qed.
Hint Resolve szip_length_ass : len.
Lemma szip_get X Y Z (f:X→Y→ status Z) A B C n a b c
: szip f A B = Success C
→ get A n a
→ get B n b
→ get C n c
→ f a b = Success c.
Proof.
intros EQ GetA GetB GetC.
general induction GetA; inv GetB; inv GetC; simpl in *;
monadS_inv EQ; eauto.
Qed.
Inductive status_eq {A} (eqA : relation A) : status A → status A → Prop :=
| status_eq_Error s : status_eq eqA (Error s) (Error s)
| status_eq_Some : ∀ a a', eqA a a' → status_eq eqA (Success a) (Success a').
Require Import Containers.Tactics.
Program Instance success_Equivalence A eqA `(Equivalence A eqA) :
Equivalence (status_eq eqA).
Next Obligation. inductive_refl.
Qed.
Next Obligation. inductive_sym.
Qed.
Next Obligation. inductive_trans.
Qed.