Lvc.Constr.CSetGet
Require Export Setoid Coq.Classes.Morphisms.
Require Export Sets SetInterface SetConstructs SetProperties.
Require Import EqDec Get CSetNotation CSetTac CSetComputable.
Definition list_union X `{OrderedType X} (L:list (set X)) :=
fold_left union L ∅.
Lemma list_union_start {X} `{OrderedType X} (s: set X) L t
: s ⊆ t
→ s ⊆ fold_left union L t.
Lemma list_union_incl {X} `{OrderedType X} (L:list (set X)) (s s´:set X)
: (∀ n t, get L n t → t ⊆ s´)
→ s ⊆ s´
→ fold_left union L s ⊆ s´.
Lemma incl_list_union {X} `{OrderedType X} (s: set X) L n t u
: get L n t
→ s ⊆ t
→ s ⊆ fold_left union L u.
Lemma list_union_get {X} `{OrderedType X} L (x:X) u
: x ∈ fold_left union L u
→ { n : nat & { t : set X | get L n t ∧ x ∈ t} } + { x ∈ u }.
Lemma get_list_union_map X Y `{OrderedType Y} (f:X → set Y) L n x
: get L n x
→ f x [<=] list_union (List.map f L).
Lemma get_in_incl X `{OrderedType X} (L:list X) s
: (∀ n x, get L n x → x ∈ s)
→ of_list L ⊆ s.
Lemma get_in_of_list X `{OrderedType X} L n x
: get L n x
→ x ∈ of_list L.
Require Export Sets SetInterface SetConstructs SetProperties.
Require Import EqDec Get CSetNotation CSetTac CSetComputable.
Definition list_union X `{OrderedType X} (L:list (set X)) :=
fold_left union L ∅.
Lemma list_union_start {X} `{OrderedType X} (s: set X) L t
: s ⊆ t
→ s ⊆ fold_left union L t.
Lemma list_union_incl {X} `{OrderedType X} (L:list (set X)) (s s´:set X)
: (∀ n t, get L n t → t ⊆ s´)
→ s ⊆ s´
→ fold_left union L s ⊆ s´.
Lemma incl_list_union {X} `{OrderedType X} (s: set X) L n t u
: get L n t
→ s ⊆ t
→ s ⊆ fold_left union L u.
Lemma list_union_get {X} `{OrderedType X} L (x:X) u
: x ∈ fold_left union L u
→ { n : nat & { t : set X | get L n t ∧ x ∈ t} } + { x ∈ u }.
Lemma get_list_union_map X Y `{OrderedType Y} (f:X → set Y) L n x
: get L n x
→ f x [<=] list_union (List.map f L).
Lemma get_in_incl X `{OrderedType X} (L:list X) s
: (∀ n x, get L n x → x ∈ s)
→ of_list L ⊆ s.
Lemma get_in_of_list X `{OrderedType X} L n x
: get L n x
→ x ∈ of_list L.