Lvc.Infra.Get
Require Import Arith Coq.Lists.List Setoid Coq.Lists.SetoidList.
Require Export Infra.Option EqDec AutoIndTac Util LengthEq.
Set Implicit Arguments.
Require Export Infra.Option EqDec AutoIndTac Util LengthEq.
Set Implicit Arguments.
Inductive getT (X:Type) : list X → nat → X → Type :=
| getTLB xl x : getT (x::xl) 0 x
| getTLS n xl x x´ : getT xl n x → getT (x´::xl) (S n) x.
Inductive get (X:Type) : list X → nat → X → Prop :=
| getLB xl x : get (x::xl) 0 x
| getLS n xl x x´ : get xl n x → get (x´::xl) (S n) x.
Get is informative anyway.
Lemma get_getT X (x:X) n L
: get L n x → getT L n x.
Lemma getT_get X (x:X) n L
: getT L n x → get L n x.
Lemma get_functional X (xl:list X) n (x x´:X) :
get xl n x → get xl n x´ → x = x´.
Lemma get_shift X (L:list X) k L1 blk :
get L k blk → get (L1 ++ L) (length L1+k) blk.
Lemma shift_get X (L:list X) k L1 blk :
get (L1 ++ L) (length L1+k) blk → get L k blk.
Lemma get_app X (L L´:list X) k x
: get L k x → get (L ++ L´) k x.
Lemma get_nth_default {X:Type} L n m (default:X):
get L n m → nth n L default = m.
Lemma get_length {X:Type} L n (s:X)
(getl : get L n s) :
n < length L.
Lemma get_nth X L n m (d:X) :
get L n m → nth n L d = m.
Lemma nth_default_nil X (v : X) x : nth_default v nil x = v.
Lemma get_nth_error X (L : list X) k x :
get L k x → nth_error L k = Some x.
Lemma nth_error_nth X (L:list X) d x n
: nth_error L n = Some x → nth n L d = x.
Lemma nth_get {X:Type} L n s {default:X}
(lt : n < length L)
(nthL : nth n L default = s):
get L n s.
Lemma nth_get_neq {X:Type} L n s {default:X}
(neq:s ≠ default)
(nthL : nth n L default = s):
get L n s.
Lemma nth_error_get X (L : list X) k x :
nth_error L k = Some x → get L k x.
Lemma nth_error_app X (L L´:list X) k x
: nth_error L k = Some x → nth_error (L++L´) k = Some x.
Lemma nth_error_shift X (L L´:list X) x
: nth_error (L++(x::L´)) (length L) = Some x.
Lemma nth_app_shift X (L L´:list X) x d
: x < length L → nth x (L++L´) d = nth x L d.
Ltac get_functional :=
match goal with
| [ H : get ?XL ?n _, H´ : get ?XL ?n _ |- _ ] ⇒
simplify_eq (get_functional H H´); intros; clear H
| _ ⇒ fail "no matching get assumptions"
end.
Ltac eval_nth_get :=
match goal with
| [ H : get ?XL ?n _ |- (bind (nth_error ?XL ?n) _) = _ ] ⇒
rewrite (get_nth_error H); simpl
| _ ⇒ fail "no matching get assumptions"
end.
Lemma get_dec {X} (L:list X) n
: { x | get L n x } + { ∀ x, get L n x → False }.
Hint Constructors get : get.
Hint Resolve get_functional : get.
Hint Resolve get_shift : get.
Hint Resolve nth_error_get : get.
Ltac simplify_get := try repeat get_functional; repeat eval_nth_get; eauto with get.
Lemma nth_shift X x (L L´:list X) d
: nth (length L+x) (L++L´) d = nth x L´ d.
Lemma get_range X (L:list X) n v
: get L n v → n < length L.
Lemma get_in_range X (L:list X) n
: n < length L → { x:X & get L n x }.
Lemma nth_in X L x (d:X)
: x < length L → In (nth x L d) L.
In and get
Lemma in_get X `{EqDec X eq} (xl : list X) (x : X) :
In x xl → { n : nat & get xl n x }.
Lemma get_in X `{EqDec X eq} (xl : list X) (x : X) n :
get xl n x → In x xl.
Some helpful tactics
Lemma list_map_eq X Y Z (f:X→Z) g (L:list X) (L´:list Y) n x
: List.map f L = List.map g L´
→ get L n x → ∃ y, get L´ n y ∧ f x = g y.
Lemma map_get_1 X Y (L:list X) (f:X → Y) n x
: get L n x → get (List.map f L) n (f x).
Lemma map_get_2 X Y (L:list X) (f:X → Y) n x
: get (List.map f L) n x → ∃ x´ : X, get L n x´.
Lemma map_get_3 X Y (L:list X) (f:X → Y) n x
: getT (List.map f L) n x → { x´ : X & (getT L n x´ × (f x´ = x))%type }.
Lemma map_get_4 X Y (L:list X) (f:X → Y) n x
: get (List.map f L) n x → { x´ : X | get L n x´ ∧ f x´ = x }.
Lemma map_get X Y (L:list X) (f:X → Y) n blk Z
: get L n blk
→ get (List.map f L) n Z
→ Z = f blk.
Lemma get_length_eq X Y (L:list X) (L´:list Y) n x
: get L n x → length L = length L´ → ∃ y, get L´ n y.
Require Compare_dec.
Lemma get_in_range_app X L L´ n (x:X)
: n < length L → get (L ++ L´) n x → get L n x.
Lemma get_subst X (L L´:list X) x x´ n
: get (L ++ x :: L´) n x´
→ get L n x´
∨ (x = x´ ∧ n = length L)
∨ (get L´ (n - S (length L)) x´ ∧ n > length L).
Lemma get_app_cases X (L L´:list X) x´ n
: get (L ++ L´) n x´
→ get L n x´
∨ (get L´ (n - length L) x´ ∧ n ≥ length L).
Lemma get_app_right X (L L´:list X) n n´ x
: n´ = (length L´ + n) → get L n x → get (L´ ++ L) n´ x.
Lemma get_length_app X (L L´:list X) x
: get (L ++ x :: L´) (length L) x.
Lemma get_app_le X (L L´:list X) n x (LE:n < length L)
: get (L ++ L´) n x → get L n x.
Lemma tl_map X Y L (f:X → Y)
: List.map f (tl L) = tl (List.map f L).
Some further helpful lemmata