Set Implicit Arguments.
Require Import Morphisms Omega.
Require Export semantics typing calculus.order.
Require Import Morphisms Omega.
Require Export semantics typing calculus.order.
Definition active (s: exp X) :=
match s with lambda s => True | _ => False end.
Definition C (T: SemType) (s: exp X) :=
exists t, s ▷ t /\ (active t -> T t).
Fixpoint V (A: type) (s: exp X) :=
match A with
| typevar beta => False
| A → B => match s with
| lambda s => normal s /\
forall t delta, C (V A) t -> C (V B) ((ren delta (lambda s)) t)
| _ => False
end
end.
Definition E A := C (V A).
Definition G Gamma gamma := forall i A, nth Gamma i = Some A -> E A (gamma i).
Lemma E_evaluates s A:
E A s -> exists t, s ▷ t.
Proof. intros (t & H1 & H2); exists t; intuition. Qed.
Lemma closure_under_expansion s t A:
s >* t -> E A s -> E A t.
Proof.
intros H [v [[H1 H2] H3]]. exists v. intuition. split; eauto.
eapply confluence_normal_left; eauto.
Qed.
Lemma closure_under_reduction s t A:
s >* t -> E A t -> E A s.
Proof.
intros H [v [[H1 H2] H3]]. exists v; intuition. split; eauto.
Qed.
Definition ren_closed (S: SemType) :=
forall delta s, S s -> S (ren delta s).
Lemma ren_closed_C S: ren_closed S -> ren_closed (C S).
Proof.
intros H delta s; unfold C in *; intros (t & [H1 H2] & H3).
exists (ren delta t); split.
split; eauto using ren_steps, normal_ren.
intros H4. eapply H, H3. destruct t; cbn in *; intuition.
Qed.
Lemma ren_closed_V A: ren_closed (V A).
Proof.
induction A as [beta | A IHA B IHB].
- intros ? ? [].
- intros delta []; cbn in *; eauto; intros [H1 H2].
split; eauto using normal_ren.
intros t delta' H'. asimpl.
replace (_ • e) with (ren (upRen_exp_exp (delta >> delta')) e)by now asimpl.
now eapply H2.
Qed.
Lemma ren_closed_E A: ren_closed (E A).
Proof.
eapply ren_closed_C, ren_closed_V.
Qed.
Lemma ren_closed_G Gamma gamma delta: G Gamma gamma -> G Gamma (gamma >> ren delta).
Proof.
intros H x A E. eapply ren_closed_E, H, E.
Qed.
Lemma E_var x A: E A (var x).
Proof.
exists (var x). unfold evaluates; cbn; intuition.
Qed.
Lemma G_id Gamma: G Gamma var.
Proof.
intros ???. eapply E_var.
Qed.
Lemma G_cons Gamma A s gamma:
G Gamma gamma -> E A s -> G (A :: Gamma) (s .: gamma).
Proof.
intros. intros [|] B H'; cbn in *.
now injection H' as ->. now eapply H.
Qed.
Lemma G_up Gamma A gamma:
G Gamma gamma -> G (A :: Gamma) (up gamma).
Proof.
eauto using G_cons, ren_closed_G, E_var.
Qed.
Lemma compat_var Gamma i A gamma:
nth Gamma i = Some A -> G Gamma gamma -> E A (gamma i).
Proof. intuition. Qed.
Lemma compat_const c:
E (ctype X c) (const c).
Proof.
exists (const c); split; [split|]; cbn; intuition.
Qed.
Lemma compat_lambda A B s:
E B s -> (forall t delta, E A t -> E B (ren delta (lambda s) t)) -> E (A → B) (lambda s).
Proof.
intros [t [[H1 H2] _]] ?; cbn; exists (lambda t); intuition; split; rewrite ?H1; eauto.
intros; eapply closure_under_expansion; [|eauto]; now rewrite H1.
Qed.
Lemma compat_app A B s t:
E (A → B) s -> E A t -> E B (s t).
Proof.
intros (v1 & [H1 H2] & H3). intros (v2 & [H4 H5] & H6).
eapply closure_under_reduction. rewrite H1, H4; eauto.
destruct v1.
1, 2, 4: eexists; split; [split|]; eauto; cbn; intuition.
cbn in H3; mp H3; cbn; intuition.
specialize (H0 v2 id); asimpl in H0; unfold id in H0.
eapply H0; exists v2; split; [split|]; eauto.
Qed.
End SemanticTyping.
match s with lambda s => True | _ => False end.
Definition C (T: SemType) (s: exp X) :=
exists t, s ▷ t /\ (active t -> T t).
Fixpoint V (A: type) (s: exp X) :=
match A with
| typevar beta => False
| A → B => match s with
| lambda s => normal s /\
forall t delta, C (V A) t -> C (V B) ((ren delta (lambda s)) t)
| _ => False
end
end.
Definition E A := C (V A).
Definition G Gamma gamma := forall i A, nth Gamma i = Some A -> E A (gamma i).
Lemma E_evaluates s A:
E A s -> exists t, s ▷ t.
Proof. intros (t & H1 & H2); exists t; intuition. Qed.
Lemma closure_under_expansion s t A:
s >* t -> E A s -> E A t.
Proof.
intros H [v [[H1 H2] H3]]. exists v. intuition. split; eauto.
eapply confluence_normal_left; eauto.
Qed.
Lemma closure_under_reduction s t A:
s >* t -> E A t -> E A s.
Proof.
intros H [v [[H1 H2] H3]]. exists v; intuition. split; eauto.
Qed.
Definition ren_closed (S: SemType) :=
forall delta s, S s -> S (ren delta s).
Lemma ren_closed_C S: ren_closed S -> ren_closed (C S).
Proof.
intros H delta s; unfold C in *; intros (t & [H1 H2] & H3).
exists (ren delta t); split.
split; eauto using ren_steps, normal_ren.
intros H4. eapply H, H3. destruct t; cbn in *; intuition.
Qed.
Lemma ren_closed_V A: ren_closed (V A).
Proof.
induction A as [beta | A IHA B IHB].
- intros ? ? [].
- intros delta []; cbn in *; eauto; intros [H1 H2].
split; eauto using normal_ren.
intros t delta' H'. asimpl.
replace (_ • e) with (ren (upRen_exp_exp (delta >> delta')) e)by now asimpl.
now eapply H2.
Qed.
Lemma ren_closed_E A: ren_closed (E A).
Proof.
eapply ren_closed_C, ren_closed_V.
Qed.
Lemma ren_closed_G Gamma gamma delta: G Gamma gamma -> G Gamma (gamma >> ren delta).
Proof.
intros H x A E. eapply ren_closed_E, H, E.
Qed.
Lemma E_var x A: E A (var x).
Proof.
exists (var x). unfold evaluates; cbn; intuition.
Qed.
Lemma G_id Gamma: G Gamma var.
Proof.
intros ???. eapply E_var.
Qed.
Lemma G_cons Gamma A s gamma:
G Gamma gamma -> E A s -> G (A :: Gamma) (s .: gamma).
Proof.
intros. intros [|] B H'; cbn in *.
now injection H' as ->. now eapply H.
Qed.
Lemma G_up Gamma A gamma:
G Gamma gamma -> G (A :: Gamma) (up gamma).
Proof.
eauto using G_cons, ren_closed_G, E_var.
Qed.
Lemma compat_var Gamma i A gamma:
nth Gamma i = Some A -> G Gamma gamma -> E A (gamma i).
Proof. intuition. Qed.
Lemma compat_const c:
E (ctype X c) (const c).
Proof.
exists (const c); split; [split|]; cbn; intuition.
Qed.
Lemma compat_lambda A B s:
E B s -> (forall t delta, E A t -> E B (ren delta (lambda s) t)) -> E (A → B) (lambda s).
Proof.
intros [t [[H1 H2] _]] ?; cbn; exists (lambda t); intuition; split; rewrite ?H1; eauto.
intros; eapply closure_under_expansion; [|eauto]; now rewrite H1.
Qed.
Lemma compat_app A B s t:
E (A → B) s -> E A t -> E B (s t).
Proof.
intros (v1 & [H1 H2] & H3). intros (v2 & [H4 H5] & H6).
eapply closure_under_reduction. rewrite H1, H4; eauto.
destruct v1.
1, 2, 4: eexists; split; [split|]; eauto; cbn; intuition.
cbn in H3; mp H3; cbn; intuition.
specialize (H0 v2 id); asimpl in H0; unfold id in H0.
eapply H0; exists v2; split; [split|]; eauto.
Qed.
End SemanticTyping.
Section Soundness.
Context {X: Const}.
Implicit Type (s: exp X).
Definition semtyping Gamma s A := forall gamma, G Gamma gamma -> E A (gamma • s).
Notation "Gamma ⊨ s : A" := (semtyping Gamma s A) (at level 80, s at level 99).
Lemma semantic_soundness Gamma s A:
Gamma ⊢ s : A -> Gamma ⊨ s : A.
Proof.
induction 1.
- intros ??; cbn; eapply compat_var; eauto.
- intros ??; cbn; eapply compat_const.
- intros ??; cbn; eapply compat_lambda; eauto using G_up.
intros; eapply closure_under_reduction. cbn; dostep; now asimpl.
eapply IHtyping, G_cons; eauto.
replace (gamma >> _) with (gamma >> ren delta) by now asimpl.
eapply ren_closed_G; eauto.
- intros ??; cbn; eapply compat_app; eauto.
Qed.
Context {X: Const}.
Implicit Type (s: exp X).
Definition semtyping Gamma s A := forall gamma, G Gamma gamma -> E A (gamma • s).
Notation "Gamma ⊨ s : A" := (semtyping Gamma s A) (at level 80, s at level 99).
Lemma semantic_soundness Gamma s A:
Gamma ⊢ s : A -> Gamma ⊨ s : A.
Proof.
induction 1.
- intros ??; cbn; eapply compat_var; eauto.
- intros ??; cbn; eapply compat_const.
- intros ??; cbn; eapply compat_lambda; eauto using G_up.
intros; eapply closure_under_reduction. cbn; dostep; now asimpl.
eapply IHtyping, G_cons; eauto.
replace (gamma >> _) with (gamma >> ren delta) by now asimpl.
eapply ren_closed_G; eauto.
- intros ??; cbn; eapply compat_app; eauto.
Qed.
Lemma termination_steps Gamma s A:
Gamma ⊢ s : A -> exists t, s ▷ t.
Proof.
intros H % semantic_soundness.
specialize (H var (@G_id X Gamma)).
asimpl in H; unfold id in H.
eapply E_evaluates, H.
Qed.
Lemma ordertyping_termination_steps Gamma n s A:
Gamma ⊢(n) s : A -> exists t, s ▷ t.
Proof.
now intros ? % ordertyping_soundness % termination_steps.
Qed.
End Soundness.
Gamma ⊢ s : A -> exists t, s ▷ t.
Proof.
intros H % semantic_soundness.
specialize (H var (@G_id X Gamma)).
asimpl in H; unfold id in H.
eapply E_evaluates, H.
Qed.
Lemma ordertyping_termination_steps Gamma n s A:
Gamma ⊢(n) s : A -> exists t, s ▷ t.
Proof.
now intros ? % ordertyping_soundness % termination_steps.
Qed.
End Soundness.