Section Typing.
Context {X: Const}.
Definition ctx := list type.
Implicit Types (s t: exp X) (n m: nat) (Gamma Delta Sigma: ctx)
(x y: fin) (c d: X) (A B: type)
(sigma tau: fin -> exp X) (delta xi: fin -> fin).
Reserved Notation "Gamma ⊢ s : A" (at level 80, s at level 99).
Inductive typing Gamma : exp X -> type -> Prop :=
| typingVar i A: nth Gamma i = Some A -> Gamma ⊢ var i : A
| typingConst c: Gamma ⊢ const c : ctype X c
| typingLam s A B: A :: Gamma ⊢ s : B -> Gamma ⊢ lambda s : A → B
| typingApp s t A B: Gamma ⊢ s : A → B -> Gamma ⊢ t : A -> Gamma ⊢ s t : B
where "Gamma ⊢ s : A" := (typing Gamma s A).
Hint Constructors typing.
Definition typingRen Delta delta Gamma :=
forall x A, nth Gamma x = Some A -> nth Delta (delta x) = Some A.
Notation "Delta ⊫ delta : Gamma" := (typingRen Delta delta Gamma) (at level 80, delta at level 99).
Definition typingSubst Delta sigma Gamma :=
forall x A, nth Gamma x = Some A -> Delta ⊢ sigma x : A.
Notation "Delta ⊩ sigma : Gamma" := (typingSubst Delta sigma Gamma) (at level 80, sigma at level 99).
Lemma typingSubst_cons Delta sigma s Gamma A:
Delta ⊩ sigma : Gamma -> Delta ⊢ s : A -> Delta ⊩ s .: sigma : A :: Gamma.
Proof.
intros ??[|]; cbn; eauto; now intros ? [= ->].
Qed.
Section Preservation.
Lemma preservation_under_renaming delta Gamma Delta s A:
Gamma ⊢ s : A -> Delta ⊫ delta : Gamma -> Delta ⊢ ren_exp delta s : A.
Proof.
induction 1 in delta, Delta |-*; intros H'; cbn [ren_exp]; eauto.
econstructor; apply IHtyping.
intros []; cbn; eauto.
Qed.
Lemma preservation_under_substitution sigma Gamma Delta s A:
Gamma ⊢ s : A -> Delta ⊩ sigma: Gamma -> Delta ⊢ sigma • s : A.
Proof.
induction 1 in sigma, Delta |-*; intros H'; cbn [subst_exp]; subst; eauto.
econstructor; apply IHtyping; intros []; cbn; eauto.
intros; eapply preservation_under_renaming; eauto.
intros ?; eauto.
Qed.
Lemma preservation_under_reduction s s' Gamma A:
s > s' -> Gamma ⊢ s : A -> Gamma ⊢ s' : A.
Proof.
induction 1 in Gamma, A |-*; intros H1; invp @typing; eauto.
inv H3. eapply preservation_under_substitution; eauto.
intros []; cbn; eauto.
intros ? H; now injection H as ->.
Qed.
Lemma preservation_under_steps s s' Gamma A:
s >* s' -> Gamma ⊢ s : A -> Gamma ⊢ s' : A.
Proof.
induction 1 in Gamma, A |-*; eauto using preservation_under_reduction.
Qed.
End Preservation.
Lemma weakening_app Gamma Delta s A:
Gamma ⊢ s : A -> Gamma ++ Delta ⊢ s : A.
Proof.
intros H; replace s with (ren id s) by now asimpl.
eapply preservation_under_renaming; eauto.
intros i B H'; unfold id.
rewrite nth_error_app1; eauto.
eapply nth_error_Some_lt; eauto.
Qed.
Lemma typing_variables Gamma s A:
Gamma ⊢ s : A -> forall x, x ∈ vars s -> x ∈ dom Gamma.
Proof.
intros ? x H1 % vars_varof.
induction H in x, H1 |-*; inv H1; eauto.
- now domin H.
- specialize (IHtyping _ H2).
eapply dom_lt_iff in IHtyping.
cbn in *; intuition.
Qed.
End Typing.
Notation "Gamma ⊢ s : A" := (typing Gamma s A) (at level 80, s at level 99).
Notation "Delta ⊫ delta : Gamma" := (typingRen Delta delta Gamma) (at level 80, delta at level 99).
Notation "Delta ⊩ sigma : Gamma" := (typingSubst Delta sigma Gamma) (at level 80, sigma at level 99).
Hint Constructors typing.
Hint Resolve typing_variables.
Hint Resolve
preservation_under_renaming
preservation_under_substitution.
Lemma preservation_under_renaming delta Gamma Delta s A:
Gamma ⊢ s : A -> Delta ⊫ delta : Gamma -> Delta ⊢ ren_exp delta s : A.
Proof.
induction 1 in delta, Delta |-*; intros H'; cbn [ren_exp]; eauto.
econstructor; apply IHtyping.
intros []; cbn; eauto.
Qed.
Lemma preservation_under_substitution sigma Gamma Delta s A:
Gamma ⊢ s : A -> Delta ⊩ sigma: Gamma -> Delta ⊢ sigma • s : A.
Proof.
induction 1 in sigma, Delta |-*; intros H'; cbn [subst_exp]; subst; eauto.
econstructor; apply IHtyping; intros []; cbn; eauto.
intros; eapply preservation_under_renaming; eauto.
intros ?; eauto.
Qed.
Lemma preservation_under_reduction s s' Gamma A:
s > s' -> Gamma ⊢ s : A -> Gamma ⊢ s' : A.
Proof.
induction 1 in Gamma, A |-*; intros H1; invp @typing; eauto.
inv H3. eapply preservation_under_substitution; eauto.
intros []; cbn; eauto.
intros ? H; now injection H as ->.
Qed.
Lemma preservation_under_steps s s' Gamma A:
s >* s' -> Gamma ⊢ s : A -> Gamma ⊢ s' : A.
Proof.
induction 1 in Gamma, A |-*; eauto using preservation_under_reduction.
Qed.
End Preservation.
Lemma weakening_app Gamma Delta s A:
Gamma ⊢ s : A -> Gamma ++ Delta ⊢ s : A.
Proof.
intros H; replace s with (ren id s) by now asimpl.
eapply preservation_under_renaming; eauto.
intros i B H'; unfold id.
rewrite nth_error_app1; eauto.
eapply nth_error_Some_lt; eauto.
Qed.
Lemma typing_variables Gamma s A:
Gamma ⊢ s : A -> forall x, x ∈ vars s -> x ∈ dom Gamma.
Proof.
intros ? x H1 % vars_varof.
induction H in x, H1 |-*; inv H1; eauto.
- now domin H.
- specialize (IHtyping _ H2).
eapply dom_lt_iff in IHtyping.
cbn in *; intuition.
Qed.
End Typing.
Notation "Gamma ⊢ s : A" := (typing Gamma s A) (at level 80, s at level 99).
Notation "Delta ⊫ delta : Gamma" := (typingRen Delta delta Gamma) (at level 80, delta at level 99).
Notation "Delta ⊩ sigma : Gamma" := (typingSubst Delta sigma Gamma) (at level 80, sigma at level 99).
Hint Constructors typing.
Hint Resolve typing_variables.
Hint Resolve
preservation_under_renaming
preservation_under_substitution.