Library ProgrammingTuringMachines.TM.Code.CasePair
Require Import ProgrammingTools.
(* TODO: ~> base *)
Lemma pair_eq (A B : Type) (a1 a2 : A) (b1 b2 : B) :
(a1, b1) = (a2, b2) ->
a1 = a2 /\ b1 = b2.
Proof. intros H. now inv H. Qed.
Local Arguments skipn { A } !n !l.
Section CasePair.
Variable (sigX sigY: finType) (X Y: Type) (cX: codable sigX X) (cY: codable sigY Y).
Local Notation sigPair := (sigPair sigX sigY).
Definition stopAfterFirst : sigPair^+ -> bool :=
fun x => match x with
| inr (sigPair_Y y) => true
| inl STOP => true
| _ => false
end.
Definition stopAtStart : sigPair^+ -> bool :=
fun x => match x with
| inl START => true
| _ => false
end.
Definition CasePair_Rel : pRel sigPair^+ unit 2 :=
ignoreParam (
fun tin tout =>
forall p : X * Y,
tin[@Fin0] ≃ p ->
isRight tin[@Fin1] ->
tout[@Fin0] ≃ snd p /\
tout[@Fin1] ≃ fst p
).
Definition CasePair : pTM sigPair^+ unit 2 :=
LiftTapes (WriteMove (inl STOP) L) [|Fin1|];;
LiftTapes (MoveToSymbol stopAfterFirst id;; Move L) [|Fin0|];;
CopySymbols_L stopAtStart;;
LiftTapes (MoveToSymbol stopAfterFirst id;; Move L;; Write (inl START)) [|Fin0|].
Lemma CasePair_Realise : CasePair ⊨ CasePair_Rel.
Proof.
eapply Realise_monotone.
{ unfold CasePair. TM_Correct. }
{
intros tin ((), tout) H.
intros (x,y) HEncXY HRight.
destruct HEncXY as (ls&HEncXY).
TMSimp; clear_trivial_eqs. rename H1 into HCopy.
rewrite map_app, <- app_assoc in HCopy.
(* We need a case distinction, whether the encoding of y is empty, because MoveToSymbol either stops in a symbol of cY y or on inl STOP. However, both parts of the proof have identical proof scripts. *)
destruct (cY y) eqn:EY; cbn in *.
- rewrite MoveToSymbol_correct_midtape in HCopy; cbn in *; auto.
erewrite CopySymbols_L_correct_moveleft in HCopy; cbn; auto.
+ apply pair_eq in HCopy as (HCopy1, HCopy2). TMSimp.
* repeat econstructor. f_equal.
rewrite MoveToSymbol_correct_midtape; cbn; auto.
-- simpl_tape. now rewrite EY.
-- rewrite map_id, rev_involutive, List.map_map. now intros ? (?&<-&?) % in_map_iff.
-- cbn. rewrite !map_id, rev_involutive, !List.map_map.
f_equal. f_equal. setoid_rewrite isRight_right at 2; auto. now simpl_tape.
+ rewrite List.map_map. now intros ? (?&<-&?) % in_rev % in_map_iff.
+ rewrite List.map_map. now intros ? (?&<-&?) % in_map_iff.
- rewrite MoveToSymbol_correct_midtape in HCopy; cbn in *; auto.
erewrite CopySymbols_L_correct_moveleft in HCopy; cbn; auto.
+ apply pair_eq in HCopy as (HCopy1, HCopy2). TMSimp.
* repeat econstructor. f_equal.
rewrite MoveToSymbol_correct_midtape; cbn; auto.
-- simpl_tape. now rewrite EY.
-- rewrite map_id, rev_involutive, List.map_map. now intros ? (?&<-&?) % in_map_iff.
-- cbn. rewrite !map_id, rev_involutive, !List.map_map.
f_equal. f_equal. setoid_rewrite isRight_right at 2; auto. now simpl_tape.
+ rewrite List.map_map. now intros ? (?&<-&?) % in_rev % in_map_iff.
+ rewrite List.map_map. now intros ? (?&<-&?) % in_map_iff.
}
Qed.
Local Arguments plus : simpl never. Local Arguments mult : simpl never.
Local Arguments size : simpl never.
Definition CasePair_steps (x : X) :=
34 + 16 * size _ x.
Definition CasePair_T : tRel sigPair^+ 2 :=
fun tin k => exists (p : X * Y), tin[@Fin0] ≃ p /\ CasePair_steps (fst p) <= k.
Lemma CasePair_Terminates : projT1 CasePair ↓ CasePair_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold CasePair. TM_Correct. }
{
intros tin k ((x&y)&HEncP&Hk). unfold CasePair_steps in *. cbn in *.
exists 1, (32 + 16 * size _ x). repeat split; try omega.
intros tmid () ?; TMSimp.
exists (10 + 4 * size _ x), (21 + 12 * size _ x). repeat split; try omega.
{
exists (8 + 4 * size _ x), 1. repeat split; try omega. 2: now intros _ _ _.
destruct HEncP as (ls&->). cbn. destruct (cY y) eqn:EY.
- rewrite app_nil_r. rewrite MoveToSymbol_steps_midtape; cbn; auto. now rewrite !map_length.
- rewrite map_app, <- app_assoc. cbn.
rewrite MoveToSymbol_steps_midtape; cbn; auto. now rewrite !map_length.
}
intros tmid1 (). intros ?; TMSimp.
exists (8 + 8 * size _ x), (12 + 4 * size _ x). repeat split; try omega.
{
destruct HEncP as (ls&->). cbn. destruct (cY y) eqn:EY.
- rewrite app_nil_r. rewrite MoveToSymbol_correct_midtape; cbn; auto.
+ rewrite CopySymbols_L_steps_moveleft; cbn; auto. now rewrite rev_length, !map_length.
+ rewrite List.map_map. now intros ? (?&<-&?) % in_map_iff.
- rewrite map_app, <- app_assoc. cbn.
rewrite MoveToSymbol_correct_midtape; cbn; auto.
+ rewrite CopySymbols_L_steps_moveleft; cbn; auto. now rewrite rev_length, !map_length.
+ rewrite List.map_map. now intros ? (?&<-&?) % in_map_iff.
}
intros tmid2 () HCopy.
exists (8 + 4 * size _ x), 3. repeat split; try omega.
{
destruct HEncP as (ls&HEncP); TMSimp. cbn in *. destruct (cY y) eqn:EY.
- rewrite app_nil_r in HCopy. rewrite MoveToSymbol_correct_midtape in HCopy; cbn in *; auto.
+ rewrite CopySymbols_L_correct_moveleft in HCopy; cbn; auto.
* inv HCopy; TMSimp. rewrite MoveToSymbol_steps_midtape; cbn; auto. now rewrite !rev_length, !map_length.
* rewrite List.map_map. now intros ? (?&<-&?) % in_rev % in_map_iff.
+ rewrite List.map_map. now intros ? (?&<-&?) % in_map_iff.
- rewrite map_app, <- app_assoc in HCopy. cbn in *. rewrite MoveToSymbol_correct_midtape in HCopy; cbn in *; auto.
+ rewrite CopySymbols_L_correct_moveleft in HCopy; cbn; auto.
* inv HCopy; TMSimp. rewrite MoveToSymbol_steps_midtape; cbn; auto. now rewrite !rev_length, !map_length.
* rewrite List.map_map. now intros ? (?&<-&?) % in_rev % in_map_iff.
+ rewrite List.map_map. now intros ? (?&<-&?) % in_map_iff.
}
intros tmid3 _ _. exists 1, 1. split. omega. split. omega. intros _ _ _. omega.
}
Qed.
Definition Constr_pair_Rel : pRel sigPair^+ unit 2 :=
ignoreParam (
fun tin tout =>
forall (x : X) (y : Y),
tin[@Fin0] ≃ x ->
tin[@Fin1] ≃ y ->
tout[@Fin0] ≃ x /\
tout[@Fin1] ≃ (x, y)
).
Definition Constr_pair : pTM sigPair^+ unit 2 :=
LiftTapes (MoveRight _;; Move L) [|Fin0|];;
CopySymbols_L stopAtStart.
Lemma Constr_pair_Realise : Constr_pair ⊨ Constr_pair_Rel.
Proof.
eapply Realise_monotone.
{ unfold Constr_pair. TM_Correct.
- apply MoveRight_Realise with (X := X).
}
{
intros tin ((), tout) H. intros x y HEncX HEncY.
TMSimp; clear_trivial_eqs. rename H into HMoveRight; rename H0 into HCopy.
modpon HMoveRight. destruct HMoveRight as (ls&HMoveRight); TMSimp.
rewrite CopySymbols_L_correct_moveleft in HCopy; cbn in *; auto.
- apply pair_eq in HCopy as (HCopy1&HCopy2). TMSimp. split.
+ repeat econstructor. cbn. f_equal. now rewrite map_rev, rev_involutive.
+ repeat econstructor. cbn. f_equal. simpl_tape.
destruct HEncY as (ls'&HEncY); TMSimp_goal.
rewrite map_rev, rev_involutive. cbn. now rewrite map_app, <- app_assoc.
- rewrite map_rev, List.map_map. now intros ? (?&<-&?) % in_rev % in_map_iff.
}
Qed.
Definition Constr_pair_steps (x : X) : nat := 19 + 12 * size _ x.
Definition Constr_pair_T : tRel sigPair^+ 2 :=
fun tin k => exists (x : X), tin[@Fin0] ≃ x /\ Constr_pair_steps x <= k.
Lemma Constr_pair_Terminates : projT1 Constr_pair ↓ Constr_pair_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Constr_pair. TM_Correct.
- apply MoveRight_Realise with (X := X).
- apply MoveRight_Realise with (X := X).
- apply MoveRight_Terminates with (X := X).
}
{
intros tin k (x & HEncX & Hk). unfold Constr_pair_steps in *. cbn in *.
exists (10 + 4 * size _ x), (8 + 8 * size _ x). repeat split; try omega.
{
exists (8 + 4 * size _ x), 1. repeat split; try omega. 2: now intros _ _ _.
eexists. repeat split; eauto. unfold MoveRight_steps. now rewrite Encode_map_hasSize.
}
intros tmid () ?; TMSimp. modpon H. destruct H as (ls&->). cbn.
rewrite CopySymbols_L_steps_moveleft; cbn; auto. now rewrite map_length, rev_length, map_length.
}
Qed.
Snd simply discard the first element
Definition Snd_Rel : pRel sigPair^+ unit 1 :=
ignoreParam (fun tin tout => forall p : X*Y, tin[@Fin0] ≃ p -> tout[@Fin0] ≃ snd p).
Definition Snd : pTM sigPair^+ unit 1 :=
MoveToSymbol stopAfterFirst id;;
Move L;;
Write (inl START).
Lemma Snd_Realise : Snd ⊨ Snd_Rel.
Proof.
eapply Realise_monotone.
{ unfold Snd. TM_Correct. }
{
intros tin ((), tout) H. intros (x,y) HEncXY.
destruct HEncXY as (ls&HEncXY).
TMSimp; clear_trivial_eqs.
destruct (cY y) eqn:EY.
- rewrite app_nil_r.
rewrite MoveToSymbol_correct_midtape; cbn; auto.
+ cbn. simpl_tape. repeat econstructor. cbn. rewrite EY. cbn. f_equal.
+ rewrite List.map_map. now intros ? (?&<-&?) % in_map_iff.
- cbn. rewrite map_app, <- app_assoc; cbn.
rewrite MoveToSymbol_correct_midtape; cbn; auto.
+ simpl_tape. repeat econstructor. f_equal. cbn. now rewrite EY.
+ rewrite List.map_map. now intros ? (?&<-&?) % in_map_iff.
}
Qed.
Definition Snd_steps (x : X) := 12 + 4 * size _ x.
Definition Snd_T : tRel sigPair^+ 1 :=
fun tin k => exists p : X*Y, tin[@Fin0] ≃ p /\ Snd_steps (fst p) <= k.
Lemma Snd_Terminates : projT1 Snd ↓ Snd_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Snd. TM_Correct. }
{
intros tin k ((x,y)&HEncP&Hk). unfold Snd_steps in *; cbn in *.
exists (8+4*size _ x), 3. repeat split; try omega.
{
destruct HEncP as (ls&->). destruct (cY y) eqn:EY; cbn in *.
- rewrite MoveToSymbol_steps_midtape; cbn; auto. rewrite EY. cbn.
rewrite map_length, app_length, map_length. cbn. unfold size. omega.
- rewrite map_app, <- app_assoc, EY. cbn.
rewrite MoveToSymbol_steps_midtape; cbn; auto. now rewrite !map_length.
}
intros ? _ _. exists 1, 1. split. reflexivity. split. reflexivity. intros _ _ _. reflexivity.
}
Qed.
End CasePair.
Section Steps_comp.
Variable (sig tau: finType) (X Y:Type) (cX: codable sig X).
Variable (I : Retract sig tau).
Lemma CasePair_steps_comp l :
CasePair_steps (Encode_map cX I) l = CasePair_steps cX l.
Proof. unfold CasePair_steps. now rewrite Encode_map_hasSize. Qed.
Lemma Constr_pair_steps_comp l :
Constr_pair_steps (Encode_map cX I) l = Constr_pair_steps cX l.
Proof. unfold Constr_pair_steps. now rewrite Encode_map_hasSize. Qed.
Lemma Snd_steps_comp l :
Snd_steps (Encode_map cX I) l = Snd_steps cX l.
Proof. unfold Snd_steps. now rewrite Encode_map_hasSize. Qed.
End Steps_comp.
Ltac smpl_TM_CasePair :=
lazymatch goal with
| [ |- CasePair _ _ ⊨ _ ] => apply CasePair_Realise
| [ |- projT1 (CasePair _ _) ↓ _ ] => apply CasePair_Terminates
| [ |- Constr_pair _ _ ⊨ _ ] => apply Constr_pair_Realise
| [ |- projT1 (Constr_pair _ _) ↓ _] => apply Constr_pair_Terminates
| [ |- Snd _ _ ⊨ _ ] => apply Snd_Realise
| [ |- projT1 (Snd _ _) ↓ _] => apply Snd_Terminates
end.
Smpl Add smpl_TM_CasePair : TM_Correct.