From Undecidability.Shared.Libs.PSL Require Import Base FinTypes.
From Coq Require Import EqdepFacts List.
Instance eqType_depPair (F : eqType) (a : F -> eqType) : eq_dec {f : F & a f}.
Proof.
intros [x fx] [y fy]. eapply dec_transfer. now rewrite eq_sigT_iff_eq_dep.
decide (x=y).
subst y. decide (fx = fy).
+subst fy. left. reflexivity.
+right. intros eq. apply n. apply Eqdep_dec.eq_dep_eq_dec in eq. auto. intros. decide (x0=y);econstructor;eassumption;eauto.
+right. intros eq. now inv eq.
Qed.
Instance finType_depPair (F : finType) (a : F -> finType) : finTypeC (EqType( {f : F & a f} )).
Proof.
exists (undup (concat (map (fun f => map (fun x => existT a _ x) (elem (a f))) (elem F)))).
intros H. hnf in H. apply dupfreeCount. now apply dupfree_undup.
rewrite undup_id_equi. apply in_concat_iff.
exists ((fun f : F => map (fun x : a f => existT (fun x0 : F => a x0) f x) (elem (a f))) (projT1 H)).
split.
-rewrite in_map_iff. destruct H. cbn. exists e. split.
+reflexivity.
+apply countIn. setoid_rewrite enum_ok. lia.
-rewrite in_map_iff. eexists. split. reflexivity.
apply countIn. setoid_rewrite enum_ok. lia.
Qed.
Hint Extern 4 (finTypeC (EqType ({_ : _ & _}))) => eapply finType_depPair : typeclass_instances.