From Undecidability.TM Require Export Util.Prelim Util.TM_facts Code.Code.
From Undecidability.TM Require Export Lifting.Lifting.
From Undecidability.TM Require Export Combinators.Combinators.



Section isVoid.

  Definition isVoid (sig : Type) (t : tape sig) :=
    exists x rs, t = midtape rs x nil.

   Definition isVoid_size (sig : Type) (t : tape sig) (s : nat) :=
    exists x rs, t = midtape rs x nil /\ |rs| <= s.

   Lemma isVoid_size_isVoid (sig : Type) (t : tape sig) (s : nat) :
     isVoid_size t s -> isVoid t.
   Proof. intros (x&rs&->&_). hnf. eauto. Qed.

  Lemma isVoid_size_monotone (sig : Type) (t : tape sig) (s1 s2 : nat) :
    isVoid_size t s1 -> s1 <= s2 -> isVoid_size t s2.
  Proof. intros (x&rs&->&Hr) Hs. exists x, rs. split. eauto. lia. Qed.


  Lemma mapTape_isVoid_size (sig tau : Type) (t : tape sig) (s : nat) (f : sig -> tau) :
    isVoid_size (mapTape f t) s <-> isVoid_size t s.
  Proof.
    split.
    - intros (r1&r2&H&Hs). destruct t; cbn in *; inv H. rewrite map_length in Hs.
      apply map_eq_nil in H3 as ->. hnf. eauto.
    - intros (r1&r2&->&Hs). hnf. cbn. do 2 eexists; repeat split; eauto. now simpl_list.
  Qed.

  Lemma mapTape_isVoid (sig tau : Type) (t : tape sig) (f : sig -> tau) :
    isVoid (mapTape f t) <-> isVoid t.
  Proof.
    split.
    - intros (r1&r2&H). destruct t; cbn in *; inv H.
      apply map_eq_nil in H3 as ->. hnf. eauto.
    - intros (r1&r2&->). hnf. cbn. eauto.
  Qed.

  Lemma isVoid_right (sig : Type) (t : tape sig) :
    isVoid t -> right t = nil.
  Proof. now intros (x&rs&->). Qed.

  Lemma isVoid_size_right (sig : Type) (t : tape sig) (s1 : nat) :
    isVoid_size t s1 -> right t = nil.
  Proof. eauto using isVoid_right, isVoid_size_isVoid. Qed.

  Lemma isVoid_size_left (sig : Type) (t : tape sig) (s1 : nat) :
    isVoid_size t s1 -> length (left t) <= s1.
  Proof. now intros (x&r1&->&H1). Qed.

  Lemma isVoid_isVoid_size (sig : Type) (t : tape sig) :
    isVoid t -> isVoid_size t (| tape_local_l t|).
  Proof. intros (x&r2&->). cbn. hnf. eauto. Qed.

  Lemma isVoid_size_sizeOfTape (sig : Type) (t : tape sig) (s : nat) :
    isVoid_size t s ->
    sizeOfTape t <= 1 + s.
  Proof. intros [m (r1&->&H)]. cbn. simpl_list; cbn. lia. Qed.

End isVoid.

Ltac isVoid_mono :=
  once lazymatch goal with
  | [ H : isVoid_size ?t ?s1 |- isVoid_size ?t ?s2 ] =>
    apply isVoid_size_monotone with (1 := H); eauto; simpl_comp; try lia
  | [ H : isVoid_size ?t ?s1 |- isVoid ?t ] =>
    apply isVoid_size_isVoid with (1 := H)
  | [ H : isVoid ?t |- isVoid_size ?t ?s2 ] =>
    eapply isVoid_size_monotone;
    [ apply (isVoid_isVoid_size H) | eauto; simpl_comp; try lia ]
  | [ H : isVoid ?t |- isVoid ?t ] =>
    apply H
  end.
Hint Extern 10 => isVoid_mono : core.

Inductive boundary : Type :=
| START : boundary
| STOP : boundary
| UNKNOWN : boundary.

Instance boundary_eq : eq_dec boundary.
Proof. unfold dec. decide equality. Defined.
Instance boundary_fin : finTypeC (EqType boundary).
Proof. split with (enum := [START; STOP; UNKNOWN]). cbn. intros []; cbn; reflexivity. Defined.
Section Fix_Sig.

  Variable (sig : Type).

  Notation "sig '^+'" := ((boundary + sig) % type) (at level 0) : type_scope.



  Section Tape_Contains.
    Variable (sigX : Type) (X : Type) (cX : codable sigX X) (I : Retract sigX sig).

    Definition tape_contains (t: tape sig^+) (x : X) :=
      exists r1, t = midtape r1 (inl START) (map inr (Encode_map _ _ x) ++ [inl STOP]).

    Definition tape_contains_size (t: tape sig^+) (x : X) (s : nat) :=
      exists r1, t = midtape r1 (inl START) (map inr (Encode_map _ _ x) ++ [inl STOP]) /\
            length r1 <= s.

    Definition tape_contains_rev (t: tape sig^+) (x : X) :=
      exists r1, t = midtape (map inr (rev (Encode_map _ _ x)) ++ inl START :: r1) (inl STOP) nil.

    Definition tape_contains_rev_size (t: tape sig^+) (x : X) (s : nat) :=
      exists r1, t = midtape (map inr (rev (Encode_map _ _ x)) ++ inl START :: r1) (inl STOP) nil /\
            length r1 <= s.

    Lemma tape_contains_rev_isVoid t x :
      tape_contains_rev t x ->
      isVoid t.
    Proof. intros (r1&->). repeat econstructor. Qed.

    Lemma tape_contains_rev_size_isVoid t x s :
      tape_contains_rev_size t x s ->
      isVoid_size t (S (size x + s)).
    Proof.
      intros (r1&->&Hs). hnf.
      do 2 eexists. repeat split. simpl_list. cbn. unfold size. simpl_list. lia.
    Qed.

    Lemma tape_contains_size_contains t x s :
      tape_contains_size t x s -> tape_contains t x.
    Proof. intros (r1&H1&H2). hnf; eauto. Qed.

    Lemma tape_contains_rev_size_contains t x s :
      tape_contains_rev_size t x s -> tape_contains_rev t x.
    Proof. intros (r1&H1&H2). hnf; eauto. Qed.

    Lemma tape_contains_contains_size t x :
      tape_contains t x -> tape_contains_size t x (length (left t)).
    Proof. intros (r1&->). cbn. hnf. eexists. split. reflexivity. reflexivity. Qed.

    Lemma tape_contains_rev_contains_rev_size t x :
      tape_contains_rev t x -> tape_contains_rev_size t x (length (left t) - S (size x)).
    Proof.
      intros (r1&->). cbn. hnf. eexists. split. reflexivity.
      apply Nat.eq_le_incl. simpl_list; cbn. unfold size. lia.
    Qed.

    Lemma tape_contains_size_sizeOfTape (t : tape (sig^+)) x s :
      tape_contains_size t x s ->
      sizeOfTape t <= 2 + s + size x.
    Proof. intros (rs&->&H). cbn. simpl_list; cbn. simpl_list; cbn. unfold size. lia. Qed.

    Lemma tape_contains_rev_size_sizeOfTape (t : tape (sig^+)) x s :
      tape_contains_rev_size t x s ->
      sizeOfTape t <= 2 + s + size x.
    Proof. intros (rs&->&H). cbn. simpl_list; cbn. simpl_list; cbn. unfold size. lia. Qed.

    Lemma sizeOfTape_tape_contains_size (t : tape (sig^+)) (x:X) s :
      tape_contains_size t x s ->
      size x <= sizeOfTape t.
    Proof. intros (rs&->&H). cbn. simpl_list; cbn. simpl_list; cbn. unfold size. lia. Qed.

  End Tape_Contains.

  Arguments tape_contains {sigX X cX} (I t x) : simpl never.
  Arguments tape_contains_rev {sigX X cX} (I t x) : simpl never.
  Arguments tape_contains_size {sigX X cX} (I t x s) : simpl never.
  Arguments tape_contains_rev_size {sigX X cX} (I t x s) : simpl never.

  Notation "t ≃( I ) x" := (tape_contains I t x) (at level 70, no associativity).
  Notation "t ≃ x" := (t ≃(_) x) (at level 70, no associativity, only parsing).
  Notation "t ≃( I ';' s ) x" := (tape_contains_size I t x s) (at level 70, no associativity).
  Notation "t ≃( ';' s ) x" := (t ≃(_;s) x) (at level 70, only parsing).
  Notation "t ≂( I ) x" := (tape_contains_rev I t x) (at level 70, no associativity).
  Notation "t ≂ x" := (t ≃(_) x) (at level 70, no associativity, only parsing).
  Notation "t ≂( I ';' s ) x" := (tape_contains_rev_size I t x s) (at level 70, no associativity).
  Notation "t ≃( ';' s ) x" := (t ≃(_;s) x) (at level 70, no associativity, only parsing).

  Section Encodes_Ext.
    Variable (X Y sigX sigY : Type) (cX : codable sigX X) (cY : codable sigY Y) (I1 : Retract sigX sig) (I2 : Retract sigY sig).

    Lemma tape_contains_ext (t : tape (sig^+)) (x : X) (y : Y) :
      t ≃(I1) x ->
      Encode_map _ I1 x = Encode_map _ _ y ->
      t ≃(I2) y.
    Proof. cbn. intros (r1&->). repeat econstructor. cbn. do 2 f_equal. now rewrite H. Qed.

    Implicit Type x : X.
    Implicit Type y : Y.

    Lemma tape_contains_size_ext (t : tape (sig^+)) x y s1 s2 :
      t ≃(I1;s1) x ->
      Encode_map _ I1 x = Encode_map _ _ y ->
      s1 <= s2 ->
      t ≃(I2;s2) y.
    Proof. cbn. intros (r1&->&Hs) H. repeat econstructor. cbn. do 2 f_equal. now rewrite H. lia. Qed.

    Lemma tape_contains_rev_ext (t : tape (sig^+)) (x : X) (y : Y) :
      t ≃(I1) x ->
      Encode_map _ I1 x = Encode_map _ _ y ->
      t ≃(I2) y.
    Proof. cbn. intros (r1&->) H. repeat econstructor. cbn. do 2 f_equal. now rewrite H. Qed.

    Lemma tape_contains_rev_size_ext (t : tape (sig^+)) x y s1 s2 :
      t ≂(I1;s1) x ->
      Encode_map _ I1 x = Encode_map _ _ y ->
      s1 <= s2 ->
      t ≂(I2;s2) y.
    Proof. cbn. intros (r1&->&Hs) H. repeat econstructor. cbn. do 2 f_equal. now rewrite H. lia. Qed.

  End Encodes_Ext.

  Section InitTape.
    Variable (sigX X : Type) (cX : codable sigX X) (I : Retract sigX sig).

    Definition initValue (x : X) :=
      midtape nil (inl START) (map inr (Encode_map _ I x) ++ [inl STOP]).

    Lemma initValue_contains_size (x : X) :
      initValue x ≃(;0) x.
    Proof. unfold initValue. repeat econstructor. Qed.

    Lemma initValue_contains (x : X) :
      initValue x x.
    Proof. repeat econstructor. Qed.

    Definition initRight : tape sig^+ := midtape nil (inl STOP) nil.

    Lemma initRight_isVoid_size : isVoid_size (initRight) 0.
    Proof. repeat econstructor. Qed.

    Lemma initRight_isVoid : isVoid initRight.
    Proof. repeat econstructor. Qed.

  End InitTape.

End Fix_Sig.

Arguments tape_contains {sig sigX X cX} (I t x) : simpl never.
Arguments tape_contains_rev {sig sigX X cX} (I t x) : simpl never.
Arguments tape_contains_size {sig sigX X cX} (I t x s) : simpl never.
Arguments tape_contains_rev_size {sig sigX X cX} (I t x s) : simpl never.

Notation "t ≃( cX ) x" := (tape_contains cX t x) (at level 70, no associativity, format "t ≃( cX ) x").
Notation "t ≃ x" := (t ≃(_) x) (at level 70, no associativity, only parsing).
Notation "t ≃( cX ';' s ) x" := (tape_contains_size cX t x s) (at level 70, no associativity, format "t ≃( cX ';' s ) x").
Notation "t ≃( ';' s ) x" := (t ≃(_;s) x) (at level 70, only parsing).

Notation "t ≂( cX ) x" := (tape_contains_rev cX t x) (at level 70, no associativity, format "t ≂( cX ) x").
Notation "t ≂ x" := (t ≂(_) x) (at level 70, no associativity, only parsing).
Notation "t ≂( cX ';' s ) x" := (tape_contains_rev_size cX t x s) (at level 70, no associativity, format "t ≂( cX ';' s ) x").
Notation "t ≂( ';' s ) x" := (t ≂(_;s) x) (at level 70, no associativity, only parsing).


Ltac contains_solve_le :=
  try now (cbn; solve [lia]).

Local Ltac eUnify I1 I2 := ((is_evar I1 || is_evar I2);unify I1 I2).

Ltac contains_ext :=
  once lazymatch goal with
  | [H : ?t ≃(?I1;?s1) ?x |- ?t ≃(?I2;?s2) ?y] =>
    apply tape_contains_size_ext with (1 := H); try eUnify I1 I2;simpl_comp; try reflexivity; try contains_solve_le
  | [H : ?t ≃(_;?s1) ?x |- ?t ≃(_) ?y] =>
    eapply tape_contains_size_contains; contains_ext
  | [H : ?t ≃(_) ?x |- ?t ≃(_;?s2) ?y] =>
    eapply tape_contains_contains_size; contains_ext
  | [H : ?t ≃(?I1) ?x |- ?t ≃(?I2) ?y] =>
    apply tape_contains_ext with (1 := H); try eUnify I1 I2; simpl_comp; try reflexivity
  
  | [H : ?t ≂(_;?s1) ?x |- ?t ≂(_;?s2) ?y] =>
    apply tape_contains_rev_size_ext with (1 := H); simpl_comp; try reflexivity; contains_solve_le
  | [H : ?t ≂(_;?s1) ?x |- ?t ≂(_) ?y] =>
    eapply tape_contains_rev_size_contains; contains_ext
  | [H : ?t ≂(_) ?x |- ?t ≂(_;?s2) ?y] =>
    eapply tape_contains_rev_contains_rev_size; contains_ext
  | [H : ?t ≂(_) ?x |- ?t ≂(_) ?y] =>
    apply tape_contains_rev_ext with (1 := H); simpl_comp; try reflexivity
  end.

Hint Extern 10 => contains_ext : core.

Notation "sig '^+'" := (FinType (EqType (boundary + sig) % type)) (at level 0) : type_scope.


Definition compSizeFun (n : nat) (f1 f2 : Vector.t (nat -> nat) n) : Vector.t (nat -> nat) n :=
  tabulate (fun i => f1[@i] >> f2[@i]).

Notation "f >>> g" := (compSizeFun f g) (at level 40).

Notation "s '@>' i" := (s[@i]) (at level 10, only parsing).



Definition injectSizeFun {m n : nat} (f : Vector.t (nat->nat) m) (I : Vector.t (Fin.t n) m) : Vector.t (nat->nat) n :=
  LiftTapes.fill I (Vector.const id _) f.

Notation "f '@>>' I" := (injectSizeFun f I) (at level 41).