Require Import List Arith Bool Lia Eqdep_dec.
From Undecidability.Shared.Libs.DLW.Utils
Require Import utils_tac utils_list utils_nat finite.
From Undecidability.Shared.Libs.DLW.Vec
Require Import pos vec.
From Undecidability.TRAKHTENBROT
Require Import notations utils fol_ops fo_sig fo_terms fo_logic fo_sat.
Set Implicit Arguments.
Local Notation ø := vec_nil.
Section vec_fill_tail.
Variable (X : Type) (n : nat) (k : nat) (v : vec X k) (e : X).
Definition vec_fill_tail : vec X n.
Proof.
apply vec_set_pos; intros p.
destruct (le_lt_dec k (pos2nat p)) as [ | H ].
+ exact e.
+ exact (vec_pos v (nat2pos H)).
Defined.
Fact vec_fill_tail_lt p (Hp : pos2nat p < k) : vec_pos vec_fill_tail p = vec_pos v (nat2pos Hp).
Proof.
unfold vec_fill_tail; rew vec.
destruct (le_lt_dec k (pos2nat p)).
+ exfalso; lia.
+ do 2 f_equal; apply lt_pirr.
Qed.
Fact vec_fill_tail_ge p : k <= pos2nat p -> vec_pos vec_fill_tail p = e.
Proof.
intros H; unfold vec_fill_tail; rew vec.
destruct (le_lt_dec k (pos2nat p)); auto; exfalso; lia.
Qed.
End vec_fill_tail.
Opaque vec_fill_tail.
Fact vec_map_fill_tail X Y (f : X -> Y) n k v e :
vec_map f (@vec_fill_tail X n k v e) = vec_fill_tail n (vec_map f v) (f e).
Proof.
apply vec_pos_ext; intros p; rew vec.
destruct (le_lt_dec k (pos2nat p)) as [ | Hp ].
+ do 2 (rewrite vec_fill_tail_ge; auto).
+ do 2 rewrite vec_fill_tail_lt with (Hp := Hp); rew vec.
Qed.
Section vec_first_half.
Variable (X : Type) (n : nat) (k : nat) (Hk : k <= n).
Definition vec_first_half (v : vec X n) : vec X k.
Proof.
apply vec_set_pos; intros p.
refine (vec_pos v (@nat2pos _ (pos2nat p) _)).
apply lt_le_trans with (2 := Hk), pos2nat_prop.
Defined.
Fact vec_first_half_fill_tail v e : vec_first_half (vec_fill_tail _ v e) = v.
Proof.
apply vec_pos_ext; intros p.
unfold vec_first_half; rew vec.
match goal with
| |- vec_pos _ ?p = _ => assert (H : pos2nat p < k)
end.
{ rewrite pos2nat_nat2pos; apply pos2nat_prop. }
rewrite vec_fill_tail_lt with (Hp := H).
revert H.
rewrite pos2nat_nat2pos.
intros; f_equal; apply nat2pos_pos2nat.
Qed.
End vec_first_half.
Section Sig_uniformize_rels.
Variable (Σ : fo_signature) (n : nat) (Hn : forall r, ar_rels Σ r <= n).
Definition Σunif : fo_signature.
Proof.
exists (syms Σ) (rels Σ).
+ exact (ar_syms Σ).
+ exact (fun _ => n).
Defined.
Notation Σ' := Σunif.
Fixpoint fol_uniformize (A : fol_form Σ) : fol_form Σ' :=
match A with
| ⊥ => ⊥
| @fol_atom _ r v => @fol_atom Σ' r (vec_fill_tail _ v (£0))
| fol_bin c A B => fol_bin c (fol_uniformize A) (fol_uniformize B)
| fol_quant q A => fol_quant q (fol_uniformize A)
end.
Variable (X : Type) (e : X).
Section soundness.
Variables (M : fo_model Σ X).
Local Definition fom_uniformize : fo_model Σ' X.
Proof.
split.
+ intros s; apply (fom_syms M s).
+ intros r v; exact (fom_rels M r (vec_first_half (Hn r) v)).
Defined.
Notation M' := fom_uniformize.
Theorem fol_uniformize_sound A φ :
fol_sem M φ A <-> fol_sem M' φ (fol_uniformize A).
Proof.
revert φ; induction A as [ | r v | A HA B HB | q A HA ]; simpl; try tauto; intros phi.
+ apply fol_equiv_ext; f_equal.
rewrite vec_map_fill_tail, vec_first_half_fill_tail; auto.
+ apply fol_bin_sem_ext; auto.
+ apply fol_quant_sem_ext; auto.
Qed.
End soundness.
Variable (lr : list (rels Σ)).
Section completeness.
Variable (M' : fo_model Σ' X).
Local Definition fom_specialize : fo_model Σ X.
Proof.
split.
+ intros s; apply (fom_syms M' s).
+ intros r v; exact (fom_rels M' r (vec_fill_tail n v e)).
Defined.
Notation M := fom_specialize.
Section uniform_after.
Variable (r : rels Σ).
Let k := ar_rels _ r.
Let w1 : vec (fol_term Σ') _ :=
vec_fill_tail n (vec_set_pos (fun p : pos k => £(2+pos2nat p))) (£ 1).
Let w2 : vec (fol_term Σ') _ :=
vec_fill_tail n (vec_set_pos (fun p : pos k => £(2+pos2nat p))) (£ 0).
Local Definition fol_uniform_after : fol_form Σ' :=
fol_mquant fol_fa k (∀∀ @fol_atom Σ' r w1 ↔ @fol_atom Σ' r w2).
Local Fact fol_uniform_after_spec φ :
fol_sem M' φ fol_uniform_after
<-> forall v e1 e2, fom_rels M' r (@vec_fill_tail _ n k v e1)
<-> fom_rels M' r (vec_fill_tail n v e2).
Proof.
unfold fol_uniform_after.
rewrite fol_sem_mforall.
apply forall_equiv; intros v.
rewrite fol_sem_quant_fix.
apply forall_equiv; intros e1.
rewrite fol_sem_quant_fix.
apply forall_equiv; intros e2.
apply fol_equiv_sem_ext.
+ apply fol_equiv_ext; f_equal.
unfold w1; rewrite vec_map_fill_tail; simpl; f_equal.
apply vec_pos_ext; intros p; rew vec; simpl.
rewrite env_vlift_fix0; auto.
+ apply fol_equiv_ext; f_equal.
unfold w2; rewrite vec_map_fill_tail; simpl; f_equal.
apply vec_pos_ext; intros p; rew vec; simpl.
rewrite env_vlift_fix0; auto.
Qed.
End uniform_after.
Local Definition fol_all_uniform_after : fol_form Σ' :=
fol_lconj (map fol_uniform_after lr).
Let uniform := forall r, In r lr -> forall (v : vec _ (ar_rels _ r)) e1 e2,
fom_rels M' r (vec_fill_tail n v e1)
<-> fom_rels M' r (vec_fill_tail n v e2).
Local Fact fol_all_uniform_after_spec φ :
fol_sem M' φ fol_all_uniform_after <-> uniform.
Proof.
unfold fol_all_uniform_after.
rewrite fol_sem_lconj; unfold uniform.
split.
+ intros H r Hr.
apply (fol_uniform_after_spec _ φ), H, in_map_iff.
exists r; auto.
+ intros H f; rewrite in_map_iff.
intros (r & <- & Hr); apply fol_uniform_after_spec, H; auto.
Qed.
Hypothesis Hlr : uniform.
Theorem fol_uniformize_complete A φ :
incl (fol_rels A) lr
-> fol_sem M φ A <-> fol_sem M' φ (fol_uniformize A).
Proof.
revert φ; induction A as [ | r v | b A HA B HB | q A HA ]; simpl; try tauto; intros phi Hr.
+ rewrite vec_map_fill_tail; rew fot.
apply Hlr, Hr; simpl; auto.
+ apply fol_bin_sem_ext; auto.
* apply HA; intros ? ?; apply Hr, in_app_iff; auto.
* apply HB; intros ? ?; apply Hr, in_app_iff; auto.
+ apply fol_quant_sem_ext; auto.
Qed.
End completeness.
Variable (A : fol_form Σ) (HA : incl (fol_rels A) lr).
Definition Σuniformize := fol_all_uniform_after ⟑ fol_uniformize A.
Theorem Σuniformize_sound : fo_form_fin_dec_SAT_in A X
-> fo_form_fin_dec_SAT_in Σuniformize X.
Proof.
intros (M & H1 & H2 & phi & H).
exists (fom_uniformize M), H1.
exists.
{ intros ? ?; apply H2. }
exists phi; split.
+ apply fol_all_uniform_after_spec.
intros r _ v e1 e2; simpl.
do 2 rewrite vec_first_half_fill_tail; tauto.
+ revert H; apply fol_uniformize_sound.
Qed.
Theorem Σuniformize_complete : fo_form_fin_dec_SAT_in Σuniformize X
-> fo_form_fin_dec_SAT_in A X.
Proof.
intros (M' & H1 & H2 & phi & H3 & H4).
rewrite fol_all_uniform_after_spec in H3.
exists (fom_specialize M'), H1.
exists.
{ intros ? ?; apply H2. }
exists phi.
revert H4.
apply fol_uniformize_complete; auto.
Qed.
End Sig_uniformize_rels.