Lvc.Coherence.DelocationValidator
Require Import AllInRel Util Map Env Exp IL Annotation Coherence DecSolve.
Require Import Liveness.Liveness Restrict Delocation Indexwise.
Set Implicit Arguments.
Unset Printing Records.
Local Hint Extern 1 ⇒
match goal with
[ H : annotation _ _ |- annotation _ _ ] ⇒ inv H; eassumption
end.
Lemma trs_dec DL ZL s ans_lv ans
: {trs DL ZL s ans_lv ans} +
{¬ trs DL ZL s ans_lv ans}.
Proof.
revert DL ZL ans_lv ans.
sind s.
time (destruct s; destruct ans; try solve [dec_right]; destruct ans_lv; try solve [dec_right]).
+ destruct a; [ | dec_right];
destruct (IH s (ltac:(eauto)) (restr (a0\ singleton x) ⊝ DL) ZL ans_lv ans); [| dec_right].
dec_solve.
+ destruct a; [| dec_right];
destruct (IH s1 (ltac:(eauto)) DL ZL ans_lv1 ans1); [| dec_right];
destruct (IH s2 (ltac:(eauto)) DL ZL ans_lv2 ans2); [| dec_right].
dec_solve.
+ destruct (get_dec DL (counted l)) as [[[G'|]]|];[| dec_right | dec_right];
destruct (get_dec ZL (counted l)) as [[Za ?]|]; [| dec_right];
destruct a; [| dec_right];
dec_solve.
+ destruct a;[| dec_right].
dec_solve.
+ ensure (length F = length a);
ensure (length F = length sa);
ensure(length F = length sa0).
destruct (IH s (ltac:(eauto)) (Some ⊝ (getAnn ⊝ sa0) \\ app (A:=var) ⊜ (fst ⊝ F) a ++ DL)
(a ++ ZL) ans_lv ans);[| dec_right].
edestruct (indexwise_R4_dec
(R:=fun lvs Zs Za' ans' ⇒
trs (restr (getAnn lvs \ of_list (fst Zs ++ Za'))
⊝ (Some ⊝ (getAnn ⊝ sa0) \\ app (A:=var) ⊜ (fst ⊝ F) a ++ DL))
(a ++ ZL) (snd Zs) lvs ans')
(LA:=sa0)
(LB:=F)
(LC:=a)
(LD:=sa)); intros; eauto.
hnf; intros. eapply IH; eauto.
dec_solve. dec_right.
Defined.
Instance trs_dec_inst DL ZL s lv Y
: Computable (trs DL ZL s lv Y).
Proof.
hnf; eauto using trs_dec.
Defined.
Require Import Liveness.Liveness Restrict Delocation Indexwise.
Set Implicit Arguments.
Unset Printing Records.
Local Hint Extern 1 ⇒
match goal with
[ H : annotation _ _ |- annotation _ _ ] ⇒ inv H; eassumption
end.
Lemma trs_dec DL ZL s ans_lv ans
: {trs DL ZL s ans_lv ans} +
{¬ trs DL ZL s ans_lv ans}.
Proof.
revert DL ZL ans_lv ans.
sind s.
time (destruct s; destruct ans; try solve [dec_right]; destruct ans_lv; try solve [dec_right]).
+ destruct a; [ | dec_right];
destruct (IH s (ltac:(eauto)) (restr (a0\ singleton x) ⊝ DL) ZL ans_lv ans); [| dec_right].
dec_solve.
+ destruct a; [| dec_right];
destruct (IH s1 (ltac:(eauto)) DL ZL ans_lv1 ans1); [| dec_right];
destruct (IH s2 (ltac:(eauto)) DL ZL ans_lv2 ans2); [| dec_right].
dec_solve.
+ destruct (get_dec DL (counted l)) as [[[G'|]]|];[| dec_right | dec_right];
destruct (get_dec ZL (counted l)) as [[Za ?]|]; [| dec_right];
destruct a; [| dec_right];
dec_solve.
+ destruct a;[| dec_right].
dec_solve.
+ ensure (length F = length a);
ensure (length F = length sa);
ensure(length F = length sa0).
destruct (IH s (ltac:(eauto)) (Some ⊝ (getAnn ⊝ sa0) \\ app (A:=var) ⊜ (fst ⊝ F) a ++ DL)
(a ++ ZL) ans_lv ans);[| dec_right].
edestruct (indexwise_R4_dec
(R:=fun lvs Zs Za' ans' ⇒
trs (restr (getAnn lvs \ of_list (fst Zs ++ Za'))
⊝ (Some ⊝ (getAnn ⊝ sa0) \\ app (A:=var) ⊜ (fst ⊝ F) a ++ DL))
(a ++ ZL) (snd Zs) lvs ans')
(LA:=sa0)
(LB:=F)
(LC:=a)
(LD:=sa)); intros; eauto.
hnf; intros. eapply IH; eauto.
dec_solve. dec_right.
Defined.
Instance trs_dec_inst DL ZL s lv Y
: Computable (trs DL ZL s lv Y).
Proof.
hnf; eauto using trs_dec.
Defined.