Lvc.Liveness.Liveness
Require Import List Map Env AllInRel Exp Rename.
Require Import IL Annotation InRel AutoIndTac .
Set Implicit Arguments.
Notation "DL \\ ZL" := (zip (fun s L ⇒ s \ of_list L) DL ZL) (at level 50).
Local Hint Resolve incl_empty minus_incl incl_right incl_left.
Require Import IL Annotation InRel AutoIndTac .
Set Implicit Arguments.
Notation "DL \\ ZL" := (zip (fun s L ⇒ s \ of_list L) DL ZL) (at level 50).
Local Hint Resolve incl_empty minus_incl incl_right incl_left.
Liveness
Inductive overapproximation : Set
:= Functional | Imperative | FunctionalAndImperative.
Definition isFunctional (o:overapproximation) :=
match o with
| Functional ⇒ true
| FunctionalAndImperative ⇒ true
| _ ⇒ false
end.
Definition isImperative (o:overapproximation) :=
match o with
| Imperative ⇒ true
| FunctionalAndImperative ⇒ true
| _ ⇒ false
end.
Inductive live_sound (i:overapproximation)
: list params → list (set var) → stmt → ann (set var) → Prop :=
| LOpr ZL Lv x e s lv (al:ann (set var))
: live_sound i ZL Lv s al
→ live_exp_sound e lv
→ (getAnn al \ singleton x) ⊆ lv
→ x ∈ getAnn al
→ live_sound i ZL Lv (stmtLet x e s) (ann1 lv al)
| LIf Lv ZL e s1 s2 lv al1 al2
: live_sound i ZL Lv s1 al1
→ live_sound i ZL Lv s2 al2
→ live_op_sound e lv
→ getAnn al1 ⊆ lv
→ getAnn al2 ⊆ lv
→ live_sound i ZL Lv (stmtIf e s1 s2) (ann2 lv al1 al2)
| LGoto ZL Lv l Y lv blv Z
: get ZL (counted l) Z
→ get Lv (counted l) blv
Imperative Liveness requires the globals of a function to be live at the call site
→ (if isImperative i then ((blv \ of_list Z) ⊆ lv) else True)
→ length Y = length Z
→ (∀ n y, get Y n y → live_op_sound y lv)
→ live_sound i ZL Lv (stmtApp l Y) (ann0 lv)
| LReturn ZL Lv e lv
: live_op_sound e lv
→ live_sound i ZL Lv (stmtReturn e) (ann0 lv)
| LLet ZL Lv F t lv als alb
: live_sound i (fst ⊝ F ++ ZL) (getAnn ⊝ als ++ Lv) t alb
→ length F = length als
→ (∀ n Zs a, get F n Zs →
get als n a →
live_sound i (fst ⊝ F ++ ZL) (getAnn ⊝ als ++ Lv) (snd Zs) a)
→ (∀ n Zs a, get F n Zs →
get als n a →
(of_list (fst Zs)) ⊆ getAnn a
∧ (if isFunctional i then (getAnn a \ of_list (fst Zs)) ⊆ lv else True))
→ getAnn alb ⊆ lv
→ live_sound i ZL Lv (stmtFun F t)(annF lv als alb).
→ length Y = length Z
→ (∀ n y, get Y n y → live_op_sound y lv)
→ live_sound i ZL Lv (stmtApp l Y) (ann0 lv)
| LReturn ZL Lv e lv
: live_op_sound e lv
→ live_sound i ZL Lv (stmtReturn e) (ann0 lv)
| LLet ZL Lv F t lv als alb
: live_sound i (fst ⊝ F ++ ZL) (getAnn ⊝ als ++ Lv) t alb
→ length F = length als
→ (∀ n Zs a, get F n Zs →
get als n a →
live_sound i (fst ⊝ F ++ ZL) (getAnn ⊝ als ++ Lv) (snd Zs) a)
→ (∀ n Zs a, get F n Zs →
get als n a →
(of_list (fst Zs)) ⊆ getAnn a
∧ (if isFunctional i then (getAnn a \ of_list (fst Zs)) ⊆ lv else True))
→ getAnn alb ⊆ lv
→ live_sound i ZL Lv (stmtFun F t)(annF lv als alb).
Lemma live_sound_overapproximation_I ZL Lv s slv
: live_sound FunctionalAndImperative ZL Lv s slv → live_sound Imperative ZL Lv s slv.
Proof.
intros. general induction H; simpl in × |- *; econstructor; simpl; eauto.
- intros. edestruct H3; eauto.
Qed.
Lemma live_sound_overapproximation_F ZL Lv s slv
: live_sound FunctionalAndImperative ZL Lv s slv → live_sound Functional ZL Lv s slv.
Proof.
intros. general induction H; simpl in × |- *; econstructor; simpl; eauto.
Qed.
live_sound ensures that the annotation matches the program
Lemma live_sound_annotation i ZL Lv s slv
: live_sound i ZL Lv s slv → annotation s slv.
Proof.
intros. general induction H; econstructor; eauto.
Qed.
: live_sound i ZL Lv s slv → annotation s slv.
Proof.
intros. general induction H; econstructor; eauto.
Qed.
Lemma incl_incl_minus X `{OrderedType X} s t u v
: t \ u ⊆ v → s ⊆ t → s \ u ⊆ v.
Proof.
intros A B. rewrite B; eauto.
Qed.
Lemma incl_minus_exp_live_union s t e v
: s \ t ⊆ v → live_exp_sound e v → s \ t ∪ Exp.freeVars e ⊆ v.
Proof.
intros. eauto using Exp.freeVars_live with cset.
Qed.
Hint Resolve incl_incl_minus incl_minus_exp_live_union : cset.
Hint Resolve incl_minus_lr : cset.
Lemma live_sound_monotone i ZL LV LV' s lv
: live_sound i ZL LV s lv
→ PIR2 Subset LV' LV
→ live_sound i ZL LV' s lv.
Proof.
intros. general induction H; simpl; eauto using live_sound.
- PIR2_inv.
econstructor; eauto.
cases; eauto with cset.
- econstructor; eauto using PIR2_app.
Qed.
Lemma live_sound_monotone2 i ZL LV s lv a
: live_sound i ZL LV s lv
→ getAnn lv ⊆ a
→ live_sound i ZL LV s (setTopAnn lv a).
Proof.
intros. general induction H; simpl in × |- *;
eauto using live_sound, live_op_sound_incl,
live_exp_sound_incl, Subset_trans with cset.
- econstructor; eauto using live_op_sound_incl.
cases; eauto with cset.
- econstructor; eauto with cset.
+ intros. edestruct H3; eauto.
cases; eauto with cset.
Qed.
Lemma freeVars_live s lv ZL Lv
: live_sound Functional ZL Lv s lv → IL.freeVars s ⊆ getAnn lv.
Proof.
intros.
induction H; simpl; eauto using Exp.freeVars_live, Op.freeVars_live,
Op.freeVars_live_list with cset.
- eapply union_subset_3; eauto with cset.
+ eapply list_union_incl; intros; inv_get; eauto.
edestruct H3; eauto; simpl in ×. exploit H2; eauto.
eauto with cset.
Qed.
Lemma live_rename_sound i ZL Lv s an (ϱ:env var)
: live_sound i ZL Lv s an
→ live_sound i (lookup_list ϱ ⊝ ZL) (lookup_set ϱ ⊝ Lv) (rename ϱ s) (mapAnn (lookup_set ϱ) an).
Proof.
intros. general induction H; simpl.
- econstructor; eauto using live_exp_rename_sound.
+ rewrite getAnn_mapAnn.
rewrite <- lookup_set_singleton'; eauto.
rewrite lookup_set_minus_incl; eauto.
eapply lookup_set_incl; eauto.
+ rewrite getAnn_mapAnn.
eapply lookup_set_spec; eauto.
- econstructor; eauto using live_op_rename_sound.
+ rewrite getAnn_mapAnn. eapply lookup_set_incl; eauto.
+ rewrite getAnn_mapAnn. eapply lookup_set_incl; eauto.
- econstructor; eauto with len.
+ cases; eauto.
rewrite of_list_lookup_list; eauto.
etransitivity. eapply lookup_set_minus_incl; eauto.
eapply lookup_set_incl; eauto.
+ rewrite lookup_list_length; eauto with len.
+ intros; inv_get; eauto using live_op_rename_sound.
- econstructor; eauto using live_op_rename_sound.
- econstructor; eauto; try rewrite getAnn_mapAnn; eauto with len.
+ repeat rewrite map_map; simpl. rewrite <- map_map.
rewrite <- map_app.
setoid_rewrite getAnn_mapAnn.
setoid_rewrite <- map_map at 3. rewrite <- map_app. eauto.
+ intros; inv_get. simpl.
repeat rewrite map_map; simpl. rewrite <- map_map.
rewrite <- map_app.
setoid_rewrite getAnn_mapAnn.
setoid_rewrite <- map_map at 3. rewrite <- map_app. eauto.
+ intros; inv_get; simpl.
exploit H3; eauto; dcr. simpl.
split.
× rewrite of_list_lookup_list; eauto.
rewrite getAnn_mapAnn.
eapply lookup_set_incl; eauto.
× cases; eauto.
rewrite getAnn_mapAnn.
rewrite of_list_lookup_list; eauto.
rewrite lookup_set_minus_incl; eauto.
eapply lookup_set_incl; eauto.
+ eapply lookup_set_incl; eauto.
Qed.