Library CFG.Chomsky
Require Export Basics Separation Binarize ElimE ElimU.
Local Open Scope program_scope.
Definition chomsky G := efree G ∧ uniform G ∧ binary G ∧ unitfree G.
Definition normalize := elimU ∘ elimE ∘ sep ∘ bin.
Local Open Scope program_scope.
Definition chomsky G := efree G ∧ uniform G ∧ binary G ∧ unitfree G.
Definition normalize := elimU ∘ elimE ∘ sep ∘ bin.
Lemma substG_preservesLength G s s' :
binary G → binary (substG G s [s']).
Proof.
intros H. induction G as [| [A u] G IHG] ; simpl ; auto.
intros B v [E | E].
- inv E. rewrite <- substL_length_unit ; eauto.
- eapply IHG ; eauto.
intros B' v' E'. eapply H ; eauto.
Qed.
Lemma binary_sep G : binary G → binary (sep G).
Proof.
intros H.
unfold sep.
apply it_ind ; auto.
intros G' Bi.
unfold Separation.step.
destruct (pickCharRule G') as [[a [B [v [H0 [H1 H2]]]]] | H0 ] ; auto.
destruct (pickFresh G') as [C N].
cut (binary (substG G' (Ts a) [Vs C])) ; auto using substG_preservesLength.
intros Bin A u E. destruct E ; [inv H3 | ] ; eauto.
Qed.
Lemma binary_elimE G : binary G → binary (elimE G).
Proof.
intros H A u H0.
apply delE_rules, closure_slist in H0.
destruct H0 as [u' [H0 H1]].
apply slist_length in H1.
specialize (H A u' H0). omega.
Qed.
Lemma binary_unit G : binary G → binary (elimU G).
Proof.
intros H A u H0.
apply rule_ranG, ran_elimU_G, ranG_rule in H0.
destruct H0 as [B H0].
apply (H B u H0).
Qed.
Lemma excluded_free G : uniform G → uniform (elimE G).
Proof.
intros H A u H0 a E.
apply delE_rules in H0.
apply closure_slist in H0.
destruct H0 as [u' [H1 H2]].
assert (H4 : Ts a el u') by (apply slist_subsumes in H2 ; auto).
specialize (H A u' H1 a H4).
subst. inv H2.
- inv H6. destruct E.
- now inv H3.
Qed.
Lemma excluded_unit G : uniform G → uniform (elimU G).
Proof.
intros H A u Ru.
apply rule_ranG, ran_elimU_G, ranG_rule in Ru.
destruct Ru as [B H0].
apply (H B u H0).
Qed.
Lemma efree_unit G : efree G → efree (elimU G).
Proof.
intros H A u Ru.
apply rule_ranG, ran_elimU_G, ranG_rule in Ru.
destruct Ru as [B H0].
apply (H B u H0).
Qed.
Lemma chomsky_normalform G :
chomsky (normalize G).
Proof.
repeat split.
- apply efree_unit, efree_elimE.
- apply excluded_unit, excluded_free, sep_uniform.
- apply binary_unit, binary_elimE, binary_sep, bin_binary.
- apply unitfree_elimU.
Qed.
Lemma bin_dom G :
dom G <<= dom (bin G).
Proof.
unfold bin.
apply it_ind ; auto.
intros G' H.
setoid_transitivity (dom G') ; auto.
apply Binarize.step_dom.
Qed.
Lemma language_normalform G A u :
Vs A el dom G → u ≠ [] → (language G A u ↔ language (normalize G) A u).
Proof.
intros Do U.
unfold normalize.
rewrite bin_language ; auto.
rewrite sep_language ; try now apply bin_dom.
rewrite elimE_language ; auto.
now rewrite unit_language.
Qed.