Lvc.Alpha.ShadowingFree
Require Import CSet Le.
Require Import Plus Util AllInRel Map.
Require Import Val Var Env IL Annotation Liveness.Liveness Restrict SetOperations.
Require Import DecSolve RenamedApart LabelsDefined.
Set Implicit Arguments.
Inductive shadowingFree : set var → stmt → Prop :=
| shadowingFreeExp x e s D
: x ∉ D
→ Exp.freeVars e ⊆ D
→ shadowingFree {x; D} s
→ shadowingFree D (stmtLet x e s)
| shadowingFreeIf D e s t
: Op.freeVars e ⊆ D
→ shadowingFree D s
→ shadowingFree D t
→ shadowingFree D (stmtIf e s t)
| shadowingFreeRet D e
: Op.freeVars e ⊆ D
→ shadowingFree D (stmtReturn e)
| shadowingFreeGoto D f Y
: list_union (List.map Op.freeVars Y) ⊆ D
→ shadowingFree D (stmtApp f Y)
| shadowingFreeLet D F t
: (∀ n Zs, get F n Zs → shadowingFree (of_list (fst Zs) ∪ D) (snd Zs))
→ (∀ n Zs, get F n Zs → disj (of_list (fst Zs)) D)
→ shadowingFree D t
→ shadowingFree D (stmtFun F t).
Lemma shadowingFree_ext s D D'
: D' [=] D
→ shadowingFree D s
→ shadowingFree D' s.
Proof.
intros EQ SF.
general induction SF; simpl; econstructor; try setoid_rewrite EQ; eauto with cset.
Qed.
Instance shadowingFree_morphism
: Proper (Equal ==> eq ==> iff) shadowingFree.
Proof.
unfold Proper, respectful; intros; subst.
split; eapply shadowingFree_ext; eauto. symmetry; eauto.
Qed.
Lemma renamedApart_shadowing_free s an
: renamedApart s an → shadowingFree (fst (getAnn an)) s.
Proof.
intros. general induction H; simpl; pe_rewrite; eauto using shadowingFree.
- econstructor; eauto.
+ intros. edestruct get_length_eq; eauto. exploit H1; eauto.
edestruct H2; eauto; dcr. rewrite H10 in ×. eauto.
+ intros. edestruct get_length_eq; eauto. edestruct H2; eauto; dcr. eauto.
Qed.
Require Import Plus Util AllInRel Map.
Require Import Val Var Env IL Annotation Liveness.Liveness Restrict SetOperations.
Require Import DecSolve RenamedApart LabelsDefined.
Set Implicit Arguments.
Inductive shadowingFree : set var → stmt → Prop :=
| shadowingFreeExp x e s D
: x ∉ D
→ Exp.freeVars e ⊆ D
→ shadowingFree {x; D} s
→ shadowingFree D (stmtLet x e s)
| shadowingFreeIf D e s t
: Op.freeVars e ⊆ D
→ shadowingFree D s
→ shadowingFree D t
→ shadowingFree D (stmtIf e s t)
| shadowingFreeRet D e
: Op.freeVars e ⊆ D
→ shadowingFree D (stmtReturn e)
| shadowingFreeGoto D f Y
: list_union (List.map Op.freeVars Y) ⊆ D
→ shadowingFree D (stmtApp f Y)
| shadowingFreeLet D F t
: (∀ n Zs, get F n Zs → shadowingFree (of_list (fst Zs) ∪ D) (snd Zs))
→ (∀ n Zs, get F n Zs → disj (of_list (fst Zs)) D)
→ shadowingFree D t
→ shadowingFree D (stmtFun F t).
Lemma shadowingFree_ext s D D'
: D' [=] D
→ shadowingFree D s
→ shadowingFree D' s.
Proof.
intros EQ SF.
general induction SF; simpl; econstructor; try setoid_rewrite EQ; eauto with cset.
Qed.
Instance shadowingFree_morphism
: Proper (Equal ==> eq ==> iff) shadowingFree.
Proof.
unfold Proper, respectful; intros; subst.
split; eapply shadowingFree_ext; eauto. symmetry; eauto.
Qed.
Lemma renamedApart_shadowing_free s an
: renamedApart s an → shadowingFree (fst (getAnn an)) s.
Proof.
intros. general induction H; simpl; pe_rewrite; eauto using shadowingFree.
- econstructor; eauto.
+ intros. edestruct get_length_eq; eauto. exploit H1; eauto.
edestruct H2; eauto; dcr. rewrite H10 in ×. eauto.
+ intros. edestruct get_length_eq; eauto. edestruct H2; eauto; dcr. eauto.
Qed.