Lvc.Equiv.SimF
Require Import List paco2.
Require Export Util Var Val Exp Env Map CSet AutoIndTac IL AllInRel.
Require Export Sim SimTactics IL BlockType.
Set Implicit Arguments.
Unset Printing Records.
Require Export Util Var Val Exp Env Map CSet AutoIndTac IL AllInRel.
Require Export Sim SimTactics IL BlockType.
Set Implicit Arguments.
Unset Printing Records.
Class ProofRelationF (A:Type) := {
ParamRelF : A → list var → list var → Prop;
ArgRelF : onv val → onv val → A → list val → list val → Prop;
IndexRelF : 〔A〕 → nat → nat → Prop;
Image : 〔A〕 → nat;
IndexRelDrop : ∀ AL' AL n n', IndexRelF (AL' ++ AL) n n' →
n ≥ length AL'
→ IndexRelF AL (n - length AL') (n' - Image AL')
}.
Definition frel := rel3 simtype (fun _ : simtype ⇒ F.state)
(fun (_ : simtype) (_ : F.state) ⇒ F.state).
Definition paramrel A (PR:ProofRelationF A) AL L L' :=
∀ (f f':lab) E Z s i E' Z' s' i' a,
IndexRelF AL f f'
→ get AL f a
→ get L f (F.blockI E Z s i)
→ get L' f' (F.blockI E' Z' s' i')
→ ParamRelF a Z Z'.
Definition indexwise_paramrel A (PR:ProofRelationF A) (F F':〔params × stmt〕) AL' AL :=
∀ n n' Z s Z' s' a,
IndexRelF (AL' ++ AL) n n'
→ get F n (Z,s)
→ get F' n' (Z',s')
→ get AL' n a
→ ParamRelF a Z Z'.
Definition separates A (PR:ProofRelationF A) AL' AL (F F':〔params × stmt〕) :=
length AL' = length F
∧ Image AL' = length F'
∧ (∀ n n', IndexRelF (AL' ++ AL) n n' → n < length F → n' < length F')
∧ (∀ n n', IndexRelF (AL' ++ AL) n n' → n ≥ length F → n' ≥ length F').
Lemma complete_paramrel A (PR:ProofRelationF A) E E' F F' AL' AL L L'
: indexwise_paramrel PR F F' AL' AL
→ paramrel PR AL L L'
→ separates PR AL' AL F F'
→ paramrel PR (AL' ++ AL) (mapi (F.mkBlock E) F ++ L) (mapi (F.mkBlock E') F' ++ L').
Proof.
intros IPR PAR [Len1 [Img [Ilt Ige]]].
hnf; intros ? ? ? ? ? ? ? ? ? ? ? RN GetAL GetFL GetL'.
eapply get_app_cases in GetFL; destruct GetFL as [GetFL'| [GetFL GE]].
- exploit Ilt; eauto. eapply get_range in GetFL'.
rewrite mapi_length in GetFL'; eauto.
eapply get_app_lt_1 in GetL'; [| rewrite mapi_length; eauto ].
inv_get. destruct x0 as [Z s], x as [Z' s']. simpl in ×. clear EQ0 EQ.
eauto.
- rewrite mapi_length in *; eauto.
exploit Ige; eauto.
eapply get_app_right_ge in GetAL; [ | rewrite Len1; eauto ].
eapply get_app_right_ge in GetL'; [ | rewrite mapi_length; eauto ].
eapply IndexRelDrop in RN; [| rewrite Len1; rewrite mapi_length in *; eauto].
exploit (PAR (LabI (f - ❬AL'❭)) (LabI (f' - Image AL'))); eauto.
rewrite Len1; eauto. rewrite Img; rewrite mapi_length in *; eauto.
Qed.
Definition indexes_exists {A} (PR:ProofRelationF A) AL (L L' : F.labenv) :=
∀ n n' a b, IndexRelF AL n n' → get AL n a → get L n b → ∃ b', get L' n' b'.
Lemma complete_indexes_exists A (PR:ProofRelationF A) E E' F F' AL' AL L L'
: indexes_exists PR AL L L'
→ separates PR AL' AL F F'
→ indexes_exists PR (AL' ++ AL) (mapi (F.mkBlock E) F ++ L) (mapi (F.mkBlock E') F' ++ L').
Proof.
intros IE [Len1 [Img [Ilt Ige]]].
hnf; intros ? ? ? ? RN GetAL GetF.
assert (Len3:∀ E, ❬AL'❭ = ❬mapi (F.mkBlock E) F❭) by eauto with len.
eapply get_app_cases in GetF. destruct GetF as [GetF| [GetFL GE]].
+ inv_get. exploit Ilt; eauto using get_range.
edestruct get_in_range; eauto.
eexists; eapply get_app, get_mapi; eauto.
+ eapply get_app_right_ge in GetAL; [ | erewrite Len3; eauto ].
exploit Ige; eauto. rewrite mapi_length in *; eauto.
eapply IndexRelDrop in RN; [| erewrite Len3; eauto].
edestruct IE; eauto. erewrite Len3. eauto.
rewrite Img in H0. eexists.
eapply get_app_right; eauto. rewrite mapi_length in ×. omega.
Qed.
Definition app_r t (r:frel) A (PR:ProofRelationF A) AL L L' :=
∀ (f f':lab) a E Z s i E' Z' s' i',
IndexRelF AL f f'
→ get AL f a
→ get L f (F.blockI E Z s i)
→ get L' f' (F.blockI E' Z' s' i')
→ ∀ V V' Yv Y'v Y Y',
ArgRelF E E' a Yv Y'v
→ omap (op_eval V) Y = Some Yv
→ omap (op_eval V') Y' = Some Y'v
→ ❬Z❭ = ❬Yv❭
→ ❬Z'❭ = ❬Y'v❭
→ r t (L, V, stmtApp f Y)
(L', V', stmtApp f' Y').
Lemma app_r_mon t (r r':frel) A (PR:ProofRelationF A) AL L L'
: app_r t r PR AL L L'
→ (∀ t x y, r t x y → r' t x y)
→ app_r t r' PR AL L L'.
Proof.
intros Lr LE; hnf; intros; eauto.
Qed.
Definition labenv_sim t (r:frel)
{A} (PR:ProofRelationF A) (AL:list A) L L' :=
length AL = length L ∧
smaller L' ∧
smaller L ∧
paramrel PR AL L L' ∧
indexes_exists PR AL L L' ∧
app_r t r PR AL L L'.
Lemma labenv_sim_nil t r A PR
: @labenv_sim t r A PR nil nil nil.
Proof.
do 5 (try split); hnf; intros; isabsurd.
Qed.
Hint Immediate labenv_sim_nil.
Lemma labenv_sim_mon t (r r':frel) A (PR:ProofRelationF A) AL L L'
: labenv_sim t r PR AL L L'
→ (∀ t x y, r t x y → r' t x y)
→ labenv_sim t r' PR AL L L'.
Proof.
intros [LEN [STL [STL' [PAR [IE SIM]]]]] LE; hnf; do 5 (try split); eauto.
eapply app_r_mon; eauto.
Qed.
Definition indexwise_r t (r:frel) A (PR:ProofRelationF A) AL' E E' F F' AL L L' :=
∀ n n' Z s Z' s' a,
IndexRelF (AL' ++ AL) n n'
→ get F n (Z,s)
→ get F' n' (Z',s')
→ get AL' n a
→ ∀ VL VL',
ArgRelF E E' a VL VL'
→ r t (mapi (F.mkBlock E) F ++ L, E[Z <-- List.map Some VL], s)
(mapi (F.mkBlock E') F' ++ L', E'[Z' <-- List.map Some VL'], s').
Lemma indexwise_r_mon t (r r':frel) A (PR:ProofRelationF A) AL' E E' F F' AL L L'
: indexwise_r t r PR AL' E E' F F' AL L L'
→ (∀ t x y, r t x y → r' t x y)
→ indexwise_r t r' PR AL' E E' F F' AL L L'.
Proof.
intros Idx LE; hnf; intros; eauto.
Qed.
Hint Unfold separates.
Lemma labenv_sim_extension' t r A (PR:ProofRelationF A) (AL AL':list A) E E' F F' L L'
: indexwise_r t (sim r \3/ r) PR AL' E E' F F' AL L L'
→ indexwise_paramrel PR F F' AL' AL
→ separates PR AL' AL F F'
→ labenv_sim t (sim r) PR AL L L'
→ labenv_sim t (sim r) PR (AL' ++ AL) (mapi (F.mkBlock E) F ++ L) (mapi (F.mkBlock E') F' ++ L').
Proof.
intros SIM IPR [Len2 [Img [Ilt Ige]]] [Len1 [STL [STL' [PAR [IE LSIM]]]]].
hnf; do 5 (try split);
eauto 20 using smaller_F_mkBlocks, complete_paramrel, complete_indexes_exists with len.
intros f f' ? ? ? ? ? ? ? ? ? RN GetAL GetFL GetL'.
assert (Len3:∀ E, ❬AL'❭ = ❬mapi (F.mkBlock E) F❭) by eauto with len.
eapply get_app_cases in GetFL. destruct GetFL as [GetFL'| [GetFL GE]].
- exploit Ilt; eauto. eapply get_range in GetFL'.
rewrite mapi_length in GetFL'; eauto.
eapply get_app_lt_1 in GetL'; [| rewrite mapi_length; eauto ].
inv_get. destruct x0 as [Z s], x as [Z' s']. simpl in ×. clear EQ0 EQ.
pone_step; simpl; eauto using get_app, get_mapi; simpl; eauto with len.
orewrite (f-f=0). orewrite (f'-f'=0). simpl.
exploit SIM; eauto.
- intros. exploit Ige; eauto. rewrite mapi_length in GE; eauto.
eapply get_app_right_ge in GetAL; [ | rewrite (Len3 E); eauto ].
eapply get_app_right_ge in GetL'; [ | rewrite mapi_length; eauto ].
rewrite mapi_length in ×.
eapply IndexRelDrop in RN; eauto; [| rewrite (Len3 E); eauto].
exploit (LSIM (LabI (f - ❬AL'❭)) (LabI (f' - Image AL'))) as SIMR; eauto.
rewrite Len2; eauto. rewrite Img; eauto.
eapply (@sim_Y_left F.state _ F.state _).
eapply (@sim_Y_right F.state _ F.state _).
rewrite Img in SIMR. rewrite Len2 in SIMR.
eapply paco3_mon; [| eauto].
eapply SIMR; eauto.
econstructor; simpl; eauto with len. simpl. eauto with len.
eapply F.StepGoto_mapi; simpl in *; eauto with len.
rewrite mapi_length. exploit STL; eauto; simpl in *; omega.
econstructor; simpl; eauto. simpl. eauto with len.
eapply F.StepGoto_mapi; simpl in *; eauto with len.
rewrite mapi_length. exploit STL'; eauto; simpl in *; omega.
erewrite <- Len3, Len2; eauto.
Qed.
Lemma fix_compatible_separate t A (PR:ProofRelationF A) AL' AL E E' F F' L L'
: (∀ r,
labenv_sim t (sim r) PR (AL' ++ AL) (mapi (F.mkBlock E) F ++ L) (mapi (F.mkBlock E') F' ++ L')
→ indexwise_r t (sim r) PR AL' E E' F F' AL L L')
→ indexwise_paramrel PR F F' AL' AL
→ separates PR AL' AL F F'
→ ∀ r, labenv_sim t (sim r) PR AL L L'
→ indexwise_r t (sim r) PR AL' E E' F F' AL L L'.
Proof.
intros ISIM LP SEP r SIML. pcofix CIH.
eapply ISIM.
eapply labenv_sim_extension'; eauto.
eauto using indexwise_r_mon; eauto.
eapply labenv_sim_mon; eauto.
Qed.
Lemma labenv_sim_extension t A (PR:ProofRelationF A) (AL AL':list A) E E' F F' L L'
: (∀ r,
labenv_sim t (sim r) PR (AL' ++ AL) (mapi (F.mkBlock E) F ++ L) (mapi (F.mkBlock E') F' ++ L')
→ indexwise_r t (sim r) PR AL' E E' F F' AL L L')
→ indexwise_paramrel PR F F' AL' AL
→ separates PR AL' AL F F'
→ ∀ r, labenv_sim t (sim r) PR AL L L'
→ labenv_sim t (sim r) PR (AL' ++ AL) (mapi (F.mkBlock E) F ++ L) (mapi (F.mkBlock E') F' ++ L').
Proof.
intros ISIM IP SEP r SIML.
eapply labenv_sim_extension'; eauto.
eapply indexwise_r_mon.
eapply fix_compatible_separate; eauto. eauto.
Qed.
Lemma sim_fun t A (PR:ProofRelationF A) (AL AL':list A) E E' F F' L L' s s'
: (∀ r, labenv_sim t (sim r) PR (AL' ++ AL) (mapi (F.mkBlock E) F ++ L) (mapi (F.mkBlock E') F' ++ L')
→ (sim r \3/ r) t (mapi (F.mkBlock E) F ++ L, E, s) (mapi (F.mkBlock E') F' ++ L', E', s'))
→ (∀ r,
labenv_sim t (sim r) PR (AL' ++ AL) (mapi (F.mkBlock E) F ++ L) (mapi (F.mkBlock E') F' ++ L')
→ indexwise_r t (sim r) PR AL' E E' F F' AL L L')
→ indexwise_paramrel PR F F' AL' AL
→ separates PR AL' AL F F'
→ ∀ r, labenv_sim t (sim r) PR AL L L'
→ sim r t (L, E, stmtFun F s) (L', E', stmtFun F' s').
Proof.
intros SIM_s ISIM IP SEP r SIML.
pone_step.
eapply SIM_s.
eapply labenv_sim_extension; eauto.
Qed.
Class PointwiseProofRelationF (A:Type) := {
ParamRelFP : A → list var → list var → Prop;
ArgRelFP : onv val → onv val → A → list val → list val → Prop;
}.
Lemma pointwise_PR_as_PR A
: PointwiseProofRelationF A → ProofRelationF A.
Proof.
intros. destruct X as [B C].
eapply (Build_ProofRelationF B C (fun L n n' ⇒ eq n n') (@length _)).
- intros; dcr; subst; eauto.
Defined.
Arguments pointwise_PR_as_PR : simpl never.
Hint Resolve pointwise_PR_as_PR : typeclass_instances.
Coercion pointwise_PR_as_PR : PointwiseProofRelationF >-> ProofRelationF.
Lemma IndexRelFP_eq A PR L n n'
: @IndexRelF A (pointwise_PR_as_PR PR) L n n' ↔ n = n'.
Proof.
destruct PR; simpl. reflexivity.
Qed.
Lemma IndexRelFP_refl A PR L n
: @IndexRelF A (pointwise_PR_as_PR PR) L n n.
Proof.
destruct PR; simpl. reflexivity.
Qed.
Hint Resolve IndexRelFP_refl.
Lemma labenv_sim_extension_ptw t A (PR:PointwiseProofRelationF A) (AL AL':list A) E E' F F' L L'
: (∀ r ,
labenv_sim t (sim r) PR (AL' ++ AL) (mapi (F.mkBlock E) F ++ L) (mapi (F.mkBlock E') F' ++ L')
→ indexwise_r t (sim r) PR AL' E E' F F' AL L L')
→ indexwise_paramrel PR F F' AL' AL
→ length AL' = length F
→ length F = length F'
→ ∀ r, labenv_sim t (sim r) PR AL L L'
→ labenv_sim t (sim r) PR (AL' ++ AL) (mapi (F.mkBlock E) F ++ L) (mapi (F.mkBlock E') F' ++ L').
Proof.
intros ISIM IP Len1 Len2 r SIML.
assert (separates PR AL' AL F F'). {
destruct SIML; dcr.
hnf; destruct PR; simpl; repeat split; intros; omega.
}
eapply labenv_sim_extension'; eauto.
eapply indexwise_r_mon.
eapply fix_compatible_separate; eauto. eauto.
Qed.
Lemma sim_fun_ptw t A (PR:PointwiseProofRelationF A) (AL AL':list A) F F' L L' E E' s s'
: (∀ r, labenv_sim t (sim r) PR (AL' ++ AL) (mapi (F.mkBlock E) F ++ L) (mapi (F.mkBlock E') F' ++ L')
→ (sim r \3/ r) t (mapi (F.mkBlock E) F ++ L, E, s) (mapi (F.mkBlock E') F' ++ L', E', s'))
→ (∀ r,
labenv_sim t (sim r) PR (AL' ++ AL) (mapi (F.mkBlock E) F ++ L) (mapi (F.mkBlock E') F' ++ L')
→ indexwise_r t (sim r) PR AL' E E' F F' AL L L')
→ indexwise_paramrel PR F F' AL' AL
→ length AL' = length F
→ length F = length F'
→ ∀ r, labenv_sim t (sim r) PR AL L L'
→ sim r t (L, E, stmtFun F s) (L', E', stmtFun F' s').
Proof.
intros SIM_s ISIM IP Len1 Len2 r SIML.
pone_step.
eapply SIM_s.
eapply labenv_sim_extension_ptw; eauto.
Qed.
Lemma labenv_sim_app i A (PR:ProofRelationF A) AL L L' r V V' Y Y' (f f':lab) a
: labenv_sim i (sim r) PR AL L L'
→ get AL f a
→ IndexRelF AL f f'
→ (∀ E Z s n E' Z' s' n',
get L f (F.blockI E Z s n)
→ get L' f' (F.blockI E' Z' s' n')
→ ParamRelF a Z Z'
→ (∀ Yv, omap (op_eval V) Y = ⎣ Yv ⎦ → ❬Z❭ = ❬Yv❭
→ ∃ Y'v, omap (op_eval V') Y' = ⎣ Y'v ⎦ ∧
❬Z'❭ = ❬Y'v❭ ∧ ArgRelF E E' a Yv Y'v)
∧ (if isBisim i then
(omap (op_eval V) Y = None → omap (op_eval V') Y' = None)
∧ (❬Z❭ ≠ ❬Y❭ → ❬Z'❭ ≠ ❬Y'❭)
else True))
→ sim r i (L, V, stmtApp f Y) (L', V', stmtApp f' Y').
Proof.
intros LSIM GetAL RN ALL.
edestruct LSIM as [Len1 [STL [STL' [PAR [IE SIM]]]]]; eauto; dcr.
inv_get. edestruct IE; eauto.
destruct x as [E Z s n], x0 as [E' Z' s' n'].
exploit PAR; eauto.
edestruct ALL as [A1 A2]; eauto; dcr.
case_eq (omap (op_eval V) Y); intros.
- decide (❬Z❭ = ❬Y❭).
+ edestruct A1; dcr; eauto with len.
+ destruct i; simpl in *; dcr.
× exploit H4; eauto.
pno_step.
× perr.
- destruct i; simpl in *; dcr.
+ exploit H3; eauto. pno_step.
+ perr.
Qed.
Definition bodies_r t (r:frel) A (PR:ProofRelationF A) AL (L1 L2 L L':F.labenv) :=
∀ f f' E Z s i E' Z' s' i' a,
IndexRelF AL f f'
→ get L f (F.blockI E Z s i)
→ get L' f' (F.blockI E' Z' s' i')
→ get AL f a
→ ∀ VL VL',
ArgRelF E E' a VL VL'
→ r t (drop (f - i) L1, E[Z <-- List.map Some VL], s)
(drop (f' - i') L2, E'[Z' <-- List.map Some VL'], s').
Lemma bodies_r_mon t (r r':frel) A (PR:ProofRelationF A) AL L1 L2 L L'
: bodies_r t r PR AL L1 L2 L L'
→ (∀ t x y, r t x y → r' t x y)
→ bodies_r t r' PR AL L1 L2 L L'.
Proof.
intros Idx LE; hnf; intros; eauto.
Qed.
Lemma bodies_r_app_r t A (PR:ProofRelationF A) AL L L' r
: bodies_r t r PR AL L L' L L'
→ app_r t (sim r) PR AL L L'.
Proof.
intros SIM.
hnf; intros.
pone_step; simpl; eauto with len.
Qed.
Lemma fix_compatible_bodies t A (PR:ProofRelationF A) AL L L'
: (∀ (r:frel) L1 L2, app_r t (sim r) PR AL L1 L2
→ bodies_r t (sim r) PR AL L1 L2 L L')
→ ∀ r, bodies_r t (sim r) PR AL L L' L L'.
Proof.
intros ISIM r.
pcofix CIH;
change (bodies_r t (sim r) PR AL L L' L L');
change (bodies_r t r PR AL L L' L L') in CIH.
eapply ISIM.
eapply bodies_r_app_r; eauto.
Qed.