Lvc.Spilling.SlotLiftArgs
Require Import List Map Env AllInRel Exp AppExpFree Filter LengthEq.
Require Import IL Annotation AutoIndTac Liveness.Liveness LabelsDefined.
Require Import ToBeOutsourced Slot SetUtil.
Definition choose_y (slot : var → var)
(X : ⦃var⦄) (x:var)
(RMapp : ⦃var⦄ × ⦃var⦄)
(y:var) :=
if [x ∈ X] then
if [y ∈ fst RMapp] then Var y
else Var (slot y)
else
if [y ∈ snd RMapp] then Var (slot y)
else Var y.
Lemma choose_y_freeVars slot X x RM y
: Op.freeVars (choose_y slot X x RM y) ⊆ {y; singleton (slot y)}.
Proof.
unfold choose_y; repeat cases; simpl; cset_tac.
Qed.
Fixpoint slot_lift_args
(slot : var → var)
(RM : ⦃var⦄ × ⦃var⦄)
(RMapp : ⦃var⦄ × ⦃var⦄)
(Y: list op) (Z : params)
: list op
:=
match Y, Z with
| e::Y, z::Z ⇒ let y := getVar e in
if [z ∈ fst RM ∩ snd RM]
then choose_y slot (fst RM) z RMapp y::
choose_y slot (snd RM) z RMapp y::
slot_lift_args slot RM RMapp Y Z
else if [z ∈ fst RM]
then choose_y slot (fst RM) z RMapp y::slot_lift_args slot RM RMapp Y Z
else choose_y slot (snd RM) z RMapp y::slot_lift_args slot RM RMapp Y Z
| _, _ ⇒ nil
end.
Lemma slot_lift_args_length slot RM RMapp Y Z (Len:❬Y❭=❬Z❭)
(NoDup:NoDupA eq Z)
: ❬slot_lift_args slot RM RMapp Y Z❭ =
❬Z❭ + cardinal (of_list Z ∩ (fst RM ∩ snd RM)).
Proof.
general induction Len; simpl; eauto.
inv NoDup.
repeat cases; simpl; rewrite IHLen; eauto.
- rewrite cap_special_in; eauto.
rewrite add_cardinal_2; eauto. cset_tac.
- rewrite cap_special_notin; eauto.
- rewrite cap_special_notin; eauto.
Qed.
Smpl Add match goal with
| [ H : context [ ❬slot_lift_args ?slot ?RM ?RMapp ?Y ?Z❭ ],
Len : ❬?Y❭ = ❬?Z❭, NoDup : NoDupA eq ?Z |- _ ]
⇒ rewrite (@slot_lift_args_length slot RM RMapp Y Z Len NoDup) in H
| [ Len : ❬?Y❭ = ❬?Z❭, NoDup : NoDupA eq ?Z |-
context [ ❬slot_lift_args ?slot ?RM ?RMapp ?Y ?Z❭ ] ]
⇒ rewrite (@slot_lift_args_length slot RM RMapp Y Z Len NoDup)
end : len.
Lemma choose_y_isVar slot X y RMapp v
: isVar (choose_y slot X y RMapp v).
Proof.
unfold choose_y; repeat cases; eauto using isVar.
Qed.
Lemma slot_lift_args_isVar (slot:var → var) RM RMapp Y Z
: (∀ (n : nat) (y : op), get Y n y → isVar y)
→ ∀ (n : nat) (y : op), get (slot_lift_args slot RM RMapp Y Z) n y → isVar y.
Proof.
intros.
general induction Y; destruct Z; simpl in *; isabsurd.
exploit H; eauto using get. inv H1; simpl in ×.
repeat cases in H0; inv H0; eauto using get, choose_y_isVar.
inv H6; eauto using get, choose_y_isVar.
Qed.
Lemma slot_lift_args_get slot RM RMapp Y Z n x
: get (slot_lift_args slot RM RMapp Y Z) n x
→ ∃ n y z X, get Y n y ∧ get Z n z ∧
x = choose_y slot X z RMapp (getVar y) ∧
(X = fst RM ∨ X = snd RM).
Proof.
intros.
general induction Y; destruct Z; isabsurd; simpl in ×.
- repeat cases in H; clear_trivial_eqs; inv H; eauto 20 using get.
+ inv H4; eauto 20 using get. eapply IHY in H5; dcr.
eauto 20 using get.
+ eapply IHY in H4; dcr.
eauto 20 using get.
+ eapply IHY in H4; dcr.
eauto 20 using get.
Qed.
Lemma lifted_args_in_RL_slot_SpM
(Y : args)
(R M : ⦃var⦄) RM
(slot : var → var)
(H5 : ∀ (n : nat) (y : op), get Y n y → isVar y)
(Sp L K M' R' : ⦃var⦄)
(Cover : list_union (Op.freeVars ⊝ Y) ⊆ R' ∪ M')
(M'_incl: M' ⊆ Sp ∪ M) (R'_incl : R' ⊆ (R \ K ∪ L)) Z
: list_union (Op.freeVars ⊝ slot_lift_args slot RM (R',M') Y Z) ⊆ R ∪ L ∪ map slot (Sp ∪ M) .
Proof.
apply list_union_incl; [|eauto with cset].
intros; inv_get.
eapply slot_lift_args_get in H. dcr; subst.
exploit H5; eauto. inv H; simpl in ×.
assert (v ∈ R' ∪ M'). {
rewrite <- Cover.
eapply incl_list_union; eauto using get. reflexivity. simpl. cset_tac.
}
unfold choose_y; repeat cases; simpl in ×.
- rewrite R'_incl in COND0. revert COND0; clear. intros. cset_tac.
- rewrite <- map_singleton; eauto.
apply incl_union_right.
apply lookup_set_incl; eauto.
cset_tac.
- rewrite <- map_singleton; eauto.
apply incl_union_right.
apply lookup_set_incl; eauto.
cset_tac.
- assert (v ∈ R') by cset_tac.
rewrite R'_incl in H3. revert H3; clear. intros. cset_tac.
Qed.
Lemma slot_lift_args_app_expfree (slot:var → var) RM RMapp Y Z f
(IV : ∀ (n : nat) (y : op), get Y n y → isVar y)
: app_expfree (stmtApp f (slot_lift_args slot RM RMapp Y Z)).
Proof.
econstructor.
intros; inv_get; eauto using slot_lift_args_isVar.
Qed.
Require Import IL Annotation AutoIndTac Liveness.Liveness LabelsDefined.
Require Import ToBeOutsourced Slot SetUtil.
Definition choose_y (slot : var → var)
(X : ⦃var⦄) (x:var)
(RMapp : ⦃var⦄ × ⦃var⦄)
(y:var) :=
if [x ∈ X] then
if [y ∈ fst RMapp] then Var y
else Var (slot y)
else
if [y ∈ snd RMapp] then Var (slot y)
else Var y.
Lemma choose_y_freeVars slot X x RM y
: Op.freeVars (choose_y slot X x RM y) ⊆ {y; singleton (slot y)}.
Proof.
unfold choose_y; repeat cases; simpl; cset_tac.
Qed.
Fixpoint slot_lift_args
(slot : var → var)
(RM : ⦃var⦄ × ⦃var⦄)
(RMapp : ⦃var⦄ × ⦃var⦄)
(Y: list op) (Z : params)
: list op
:=
match Y, Z with
| e::Y, z::Z ⇒ let y := getVar e in
if [z ∈ fst RM ∩ snd RM]
then choose_y slot (fst RM) z RMapp y::
choose_y slot (snd RM) z RMapp y::
slot_lift_args slot RM RMapp Y Z
else if [z ∈ fst RM]
then choose_y slot (fst RM) z RMapp y::slot_lift_args slot RM RMapp Y Z
else choose_y slot (snd RM) z RMapp y::slot_lift_args slot RM RMapp Y Z
| _, _ ⇒ nil
end.
Lemma slot_lift_args_length slot RM RMapp Y Z (Len:❬Y❭=❬Z❭)
(NoDup:NoDupA eq Z)
: ❬slot_lift_args slot RM RMapp Y Z❭ =
❬Z❭ + cardinal (of_list Z ∩ (fst RM ∩ snd RM)).
Proof.
general induction Len; simpl; eauto.
inv NoDup.
repeat cases; simpl; rewrite IHLen; eauto.
- rewrite cap_special_in; eauto.
rewrite add_cardinal_2; eauto. cset_tac.
- rewrite cap_special_notin; eauto.
- rewrite cap_special_notin; eauto.
Qed.
Smpl Add match goal with
| [ H : context [ ❬slot_lift_args ?slot ?RM ?RMapp ?Y ?Z❭ ],
Len : ❬?Y❭ = ❬?Z❭, NoDup : NoDupA eq ?Z |- _ ]
⇒ rewrite (@slot_lift_args_length slot RM RMapp Y Z Len NoDup) in H
| [ Len : ❬?Y❭ = ❬?Z❭, NoDup : NoDupA eq ?Z |-
context [ ❬slot_lift_args ?slot ?RM ?RMapp ?Y ?Z❭ ] ]
⇒ rewrite (@slot_lift_args_length slot RM RMapp Y Z Len NoDup)
end : len.
Lemma choose_y_isVar slot X y RMapp v
: isVar (choose_y slot X y RMapp v).
Proof.
unfold choose_y; repeat cases; eauto using isVar.
Qed.
Lemma slot_lift_args_isVar (slot:var → var) RM RMapp Y Z
: (∀ (n : nat) (y : op), get Y n y → isVar y)
→ ∀ (n : nat) (y : op), get (slot_lift_args slot RM RMapp Y Z) n y → isVar y.
Proof.
intros.
general induction Y; destruct Z; simpl in *; isabsurd.
exploit H; eauto using get. inv H1; simpl in ×.
repeat cases in H0; inv H0; eauto using get, choose_y_isVar.
inv H6; eauto using get, choose_y_isVar.
Qed.
Lemma slot_lift_args_get slot RM RMapp Y Z n x
: get (slot_lift_args slot RM RMapp Y Z) n x
→ ∃ n y z X, get Y n y ∧ get Z n z ∧
x = choose_y slot X z RMapp (getVar y) ∧
(X = fst RM ∨ X = snd RM).
Proof.
intros.
general induction Y; destruct Z; isabsurd; simpl in ×.
- repeat cases in H; clear_trivial_eqs; inv H; eauto 20 using get.
+ inv H4; eauto 20 using get. eapply IHY in H5; dcr.
eauto 20 using get.
+ eapply IHY in H4; dcr.
eauto 20 using get.
+ eapply IHY in H4; dcr.
eauto 20 using get.
Qed.
Lemma lifted_args_in_RL_slot_SpM
(Y : args)
(R M : ⦃var⦄) RM
(slot : var → var)
(H5 : ∀ (n : nat) (y : op), get Y n y → isVar y)
(Sp L K M' R' : ⦃var⦄)
(Cover : list_union (Op.freeVars ⊝ Y) ⊆ R' ∪ M')
(M'_incl: M' ⊆ Sp ∪ M) (R'_incl : R' ⊆ (R \ K ∪ L)) Z
: list_union (Op.freeVars ⊝ slot_lift_args slot RM (R',M') Y Z) ⊆ R ∪ L ∪ map slot (Sp ∪ M) .
Proof.
apply list_union_incl; [|eauto with cset].
intros; inv_get.
eapply slot_lift_args_get in H. dcr; subst.
exploit H5; eauto. inv H; simpl in ×.
assert (v ∈ R' ∪ M'). {
rewrite <- Cover.
eapply incl_list_union; eauto using get. reflexivity. simpl. cset_tac.
}
unfold choose_y; repeat cases; simpl in ×.
- rewrite R'_incl in COND0. revert COND0; clear. intros. cset_tac.
- rewrite <- map_singleton; eauto.
apply incl_union_right.
apply lookup_set_incl; eauto.
cset_tac.
- rewrite <- map_singleton; eauto.
apply incl_union_right.
apply lookup_set_incl; eauto.
cset_tac.
- assert (v ∈ R') by cset_tac.
rewrite R'_incl in H3. revert H3; clear. intros. cset_tac.
Qed.
Lemma slot_lift_args_app_expfree (slot:var → var) RM RMapp Y Z f
(IV : ∀ (n : nat) (y : op), get Y n y → isVar y)
: app_expfree (stmtApp f (slot_lift_args slot RM RMapp Y Z)).
Proof.
econstructor.
intros; inv_get; eauto using slot_lift_args_isVar.
Qed.