Lvc.Coherence.Coherence

Require Import Util IL InRel RenamedApart LabelsDefined OptionR.
Require Import Annotation Exp SetOperations Liveness Restrict.

Set Implicit Arguments.

Lemma plus_minus_eq n m
  : n + m - n = m.
Proof.
  omega.
Qed.

Ltac inv_get_step_some_minus dummy :=
  first [inv_get_step |
         match goal with
         | [ H : get (?f (?g1 ?A) \\ (?g2 ?B) ++ ?C) ?k _,
                 H' : get ?A ?k _ |- _ ] ⇒
           eapply get_app_lt_1 in H; [| eauto 20 with len]
         | [ H : get (?f (?g1 ?A) \\ (?g2 ?B) ++ ?C) ?k _,
                 H' : get ?B ?k _ |- _ ] ⇒
           eapply get_app_lt_1 in H; [| eauto 20 with len]
         | [ H : get (?f (?g1 ?A) \\ (?g2 ?B) ++ ?C) (❬?B + ?n) _ |- _ ] ⇒
           let LENEQ := fresh "LenEq" in
           assert (LENEQ:f (g1 A) \\ (g2 B) = B) by eauto with len;
           rewrite get_app_ge in H;
           [ rewrite LENEQ in H; rewrite plus_minus_eq in H
           | rewrite LENEQ; omega]
         | [ H : get (?f (?g1 ?A) \\ (?g2 ?B) ++ ?C) (❬?A + ?n) _ |- _ ] ⇒
           let LENEQ := fresh "LenEq" in
           assert (LENEQ:f (g1 A) \\ (g2 B) = A) by eauto with len;
           rewrite get_app_ge in H;
           [ rewrite LENEQ in H; rewrite plus_minus_eq in H
           | rewrite LENEQ; omega]
         end
        ].

Tactic Notation "inv_get_step" := inv_get_step_some_minus idtac.
Tactic Notation "inv_get" := inv_get' inv_get_step_some_minus.

Definition of Coherence: srd


Inductive srd : list (option (set var)) stmt ann (set var) Prop :=
| srdExp DL x e s lv al
  : srd (restr (lv \ singleton x) DL) s al
     srd DL (stmtLet x e s) (ann1 lv al)
| srdIf DL e s t lv als alt
  : srd DL s als
     srd DL t alt
     srd DL (stmtIf e s t) (ann2 lv als alt)
| srdRet e DL lv
  : srd DL (stmtReturn e) (ann0 lv)
| srdGoto DL lv G' f Y
  : get DL (counted f) (Some G')
     srd DL (stmtApp f Y) (ann0 lv)
| srdLet DL F t lv als alt
  : length F = length als
     ( n Zs a, get F n Zs get als n a
                 srd (restr (getAnn a \ of_list (fst Zs))
                            (Some (getAnn als) \\ (fst F) ++ DL)) (snd Zs) a)
     srd (Some (getAnn als) \\ (fst F) ++ DL) t alt
     srd DL (stmtFun F t) (annF lv als alt).

Some monotonicity properties


Lemma srd_monotone (DL DL' : list (option (set var))) s a
 : srd DL s a
    PIR2 (fstNoneOrR Equal) DL DL'
    srd DL' s a.
Proof.
  intros. general induction H; eauto using srd.
  - econstructor.
    eapply IHsrd; eauto. eapply restrict_subset; eauto.
  - destruct (PIR2_nth H0 H); eauto; dcr. inv H3.
    econstructor; eauto.
  - econstructor; eauto.
    + intros. eapply H1; eauto.
      repeat rewrite List.map_app.
      eapply PIR2_app; eauto.
      eapply restrict_subset; eauto.
    + eapply IHsrd. eapply PIR2_app; eauto.
Qed.

Lemma srd_monotone2 (DL DL' : list (option (set var))) s a
 : srd DL s a
    PIR2 (fstNoneOrR (flip Subset)) DL DL'
    srd DL' s a.
Proof.
  intros. general induction H; eauto using srd.
  - econstructor.
    eapply IHsrd; eauto. eapply restrict_subset2; eauto.
  - destruct (PIR2_nth H0 H); eauto; dcr. inv H3.
    econstructor; eauto.
  - econstructor; eauto.
    + intros. eapply H1; eauto.
      repeat rewrite List.map_app.
      eapply PIR2_app; eauto.
      eapply restrict_subset2; eauto.
    + eapply IHsrd. eapply PIR2_app; eauto.
Qed.

Every renamed apart program is coherent

Note that this lemma also builds the liveness annotation: It exploits that we can always claim more variables live

Hint Extern 20 ⇒
match goal with
  | [ H: length ?L = length ?L' |- length ?L = length (List.map ?f ?L')] ⇒ rewrite map_length; eauto
end.

Lemma renamedApart_coherent s ang DL
  : renamedApart s ang
     labelsDefined s (length DL)
     bounded (List.map Some DL) (fst (getAnn ang))
     srd (List.map Some DL) s (mapAnn fst ang).
Proof.
  intros. general induction H; invt labelsDefined; simpl in × |- *; pe_rewrite.
  - econstructor; eauto.
    eapply srd_monotone.
    eapply IHrenamedApart; eauto with cset.
    erewrite bounded_restrict_eq; simpl; eauto. eauto with cset.
  - econstructor; eauto.
  - econstructor.
  - edestruct get_in_range as [a ?]; eauto using map_get_1, srd.
  - econstructor; eauto.
    + intros. inv_map H10.
      exploit (H1 _ _ _ H9 H12 ((getAnn (mapAnn fst ans)) \\ (fst F) ++ DL)); eauto.
      × rewrite app_length. rewrite zip_length2; eauto with len.
        repeat rewrite map_length. rewrite <- H. eauto.
      × edestruct H2; eauto; dcr.
        rewrite List.map_app. eapply bounded_app; split; eauto.
        rewrite H14. eapply get_bounded.
        intros. inv_get. edestruct H2; eauto; dcr.
        rewrite getAnn_mapAnn. rewrite H10.
        eauto with cset.
        rewrite H14. rewrite <- incl_right; eauto.
      × eapply srd_monotone. eapply H14.
        rewrite getAnn_mapAnn; simpl.
        repeat rewrite List.map_app.
        eapply PIR2_app.
        erewrite bounded_restrict_eq. reflexivity.
        reflexivity. inv_get. edestruct H2; eauto; dcr.
        eapply get_bounded.
        intros. inv_get.
        edestruct H2; eauto; dcr.
        rewrite getAnn_mapAnn. rewrite H10.
        decide (n=n0); subst. repeat get_functional.
        rewrite H10; reflexivity.
        exploit H3; eauto using zip_get.
        unfold defVars in H21.
        rewrite H17.
        revert H18 H24; clear_all; cset_tac; intuition; eauto.
        erewrite bounded_restrict_eq; simpl; eauto.
        edestruct H2; eauto; dcr.
        rewrite H15. revert H19; clear_all; cset_tac; intuition; eauto.
    + eapply srd_monotone.
      eapply (IHrenamedApart ((getAnn (mapAnn fst ans)) \\ (fst F) ++ DL)); eauto.
      × rewrite app_length, zip_length2, map_length, map_length, <- H; eauto with len.
      × pe_rewrite. rewrite List.map_app. rewrite bounded_app. split; eauto.
        eapply get_bounded.
        intros. inv_get.
        edestruct H2; eauto; dcr.
        rewrite getAnn_mapAnn. rewrite H10.
        clear_all; cset_tac; intuition.
      × rewrite List.map_app. reflexivity.
Qed.