Set Implicit Arguments.
Require Import List Omega std unification calculus.
Import ListNotations.
Require Import second_order.diophantine_equations dowek.encoding.
Require Import List Omega std unification calculus.
Import ListNotations.
Require Import second_order.diophantine_equations dowek.encoding.
Section EquationEquivalences.
Variable (X: Const) (sigma: fin -> exp X).
Hypothesis (N: forall x, normal (sigma x)).
Section Variables.
Lemma forward_vars x n:
sigma x = enc n -> sigma • fst (varEQ x) ≡ sigma • snd (varEQ x).
Proof.
intros; unfold varEQ, fst, snd.
cbn. unfold shift, var_zero, funcomp; rewrite H; asimpl.
rewrite !enc_app.
change (var 0 (var 1)) with (@AppL X (repeat (var 0) 1) (var 1)).
now rewrite <-AppL_app, <-repeated_plus, plus_comm.
Qed.
Lemma backward_vars x:
sigma • fst (varEQ x) ≡ sigma • snd (varEQ x) -> exists n, sigma x = enc n.
Proof.
intros ?. eapply enc_characteristic; eauto.
cbn in H. asimpl. asimpl in H.
unfold shift in *. unfold funcomp at 5 in H.
asimpl in H. rewrite <-H.
unfold funcomp at 4. asimpl.
reflexivity.
Qed.
End Variables.
Section Constants.
Variable (x n c: nat).
Hypothesis (EQx: sigma x = enc n).
Lemma forward_consts:
n = c -> sigma • fst (constEQ x c) ≡ sigma • snd (constEQ x c).
Proof.
intros; unfold constEQ, fst, snd. subst.
asimpl; now rewrite EQx.
Qed.
Lemma backward_consts:
sigma • fst (constEQ x c) ≡ sigma • snd (constEQ x c) -> n = c.
Proof.
intros EQ; unfold constEQ, fst, snd in EQ.
asimpl in EQ. rewrite EQx in EQ.
eapply enc_equiv_injective; eauto.
Qed.
End Constants.
Section Addition.
Variable (x y z n m p c: nat).
Hypothesis (EQx: sigma x = enc m) (EQy: sigma y = enc n) (EQz: sigma z = enc p).
Lemma forward_add:
m + n = p -> sigma • fst (addEQ x y z) ≡ sigma • snd (addEQ x y z).
Proof.
intros; unfold addEQ, fst, snd; asimpl.
now rewrite EQx, EQy, EQz, <-enc_add, H.
Qed.
Lemma backward_add:
sigma • fst (addEQ x y z) ≡ sigma • snd (addEQ x y z) -> m + n = p.
Proof.
intros EQ; unfold addEQ, fst, snd in EQ; asimpl in EQ.
rewrite EQx, EQy, EQz, <-enc_add in EQ.
eauto using enc_equiv_injective.
Qed.
End Addition.
Section Multiplication.
Variable (x y z n m p c: nat).
Hypothesis (EQx: sigma x = enc m) (EQy: sigma y = enc n) (EQz: sigma z = enc p).
Lemma forward_mult :
m * n = p -> sigma • fst (mulEQ x y z) ≡ sigma • snd (mulEQ x y z).
Proof.
intros; unfold mulEQ, fst, snd; asimpl.
now rewrite EQx, EQy, EQz, <-enc_mul, H.
Qed.
Lemma backward_mult:
sigma • fst (mulEQ x y z) ≡ sigma • snd (mulEQ x y z) -> m * n = p.
Proof.
intros EQ; unfold mulEQ, fst, snd in EQ; asimpl in EQ.
rewrite EQx, EQy, EQz, <-enc_mul in EQ.
eauto using enc_equiv_injective.
Qed.
End Multiplication.
End EquationEquivalences.
Variable (X: Const) (sigma: fin -> exp X).
Hypothesis (N: forall x, normal (sigma x)).
Section Variables.
Lemma forward_vars x n:
sigma x = enc n -> sigma • fst (varEQ x) ≡ sigma • snd (varEQ x).
Proof.
intros; unfold varEQ, fst, snd.
cbn. unfold shift, var_zero, funcomp; rewrite H; asimpl.
rewrite !enc_app.
change (var 0 (var 1)) with (@AppL X (repeat (var 0) 1) (var 1)).
now rewrite <-AppL_app, <-repeated_plus, plus_comm.
Qed.
Lemma backward_vars x:
sigma • fst (varEQ x) ≡ sigma • snd (varEQ x) -> exists n, sigma x = enc n.
Proof.
intros ?. eapply enc_characteristic; eauto.
cbn in H. asimpl. asimpl in H.
unfold shift in *. unfold funcomp at 5 in H.
asimpl in H. rewrite <-H.
unfold funcomp at 4. asimpl.
reflexivity.
Qed.
End Variables.
Section Constants.
Variable (x n c: nat).
Hypothesis (EQx: sigma x = enc n).
Lemma forward_consts:
n = c -> sigma • fst (constEQ x c) ≡ sigma • snd (constEQ x c).
Proof.
intros; unfold constEQ, fst, snd. subst.
asimpl; now rewrite EQx.
Qed.
Lemma backward_consts:
sigma • fst (constEQ x c) ≡ sigma • snd (constEQ x c) -> n = c.
Proof.
intros EQ; unfold constEQ, fst, snd in EQ.
asimpl in EQ. rewrite EQx in EQ.
eapply enc_equiv_injective; eauto.
Qed.
End Constants.
Section Addition.
Variable (x y z n m p c: nat).
Hypothesis (EQx: sigma x = enc m) (EQy: sigma y = enc n) (EQz: sigma z = enc p).
Lemma forward_add:
m + n = p -> sigma • fst (addEQ x y z) ≡ sigma • snd (addEQ x y z).
Proof.
intros; unfold addEQ, fst, snd; asimpl.
now rewrite EQx, EQy, EQz, <-enc_add, H.
Qed.
Lemma backward_add:
sigma • fst (addEQ x y z) ≡ sigma • snd (addEQ x y z) -> m + n = p.
Proof.
intros EQ; unfold addEQ, fst, snd in EQ; asimpl in EQ.
rewrite EQx, EQy, EQz, <-enc_add in EQ.
eauto using enc_equiv_injective.
Qed.
End Addition.
Section Multiplication.
Variable (x y z n m p c: nat).
Hypothesis (EQx: sigma x = enc m) (EQy: sigma y = enc n) (EQz: sigma z = enc p).
Lemma forward_mult :
m * n = p -> sigma • fst (mulEQ x y z) ≡ sigma • snd (mulEQ x y z).
Proof.
intros; unfold mulEQ, fst, snd; asimpl.
now rewrite EQx, EQy, EQz, <-enc_mul, H.
Qed.
Lemma backward_mult:
sigma • fst (mulEQ x y z) ≡ sigma • snd (mulEQ x y z) -> m * n = p.
Proof.
intros EQ; unfold mulEQ, fst, snd in EQ; asimpl in EQ.
rewrite EQx, EQy, EQz, <-enc_mul in EQ.
eauto using enc_equiv_injective.
Qed.
End Multiplication.
End EquationEquivalences.
Section Forward.
Variable (X: Const) (E: list deq).
Implicit Types (x y z: nat) (c: nat).
Definition encs theta: fin -> exp X := theta >> enc.
Lemma forward_typing theta:
nil ⊩( 3) encs theta : Gamma__dwk E.
Proof.
intros ?? <- % nth_error_In % repeated_in.
eapply typing_enc.
Qed.
Lemma H10_DWK : H10 E -> SOU X 3 (H10_to_DWK X E).
Proof.
intros [theta H].
exists []. exists (encs theta). split.
now eapply forward_typing. eapply equiv_pointwise_eqs.
intros s t H'; cbn.
change s with (fst (s, t)); change t with (snd (s, t)) at 2.
remember (s,t) as q. clear Heqq.
eapply in_Equations in H' as (e & ? & ?).
eapply H in H0.
destruct e; cbn in *; intuition; subst.
all: try eapply forward_add. all: try eapply forward_consts.
all: try eapply forward_mult. all: try eapply forward_vars.
all: unfold encs, funcomp; eauto. try eapply enc_sol_encodes.
all: inv H0; eauto.
Qed.
End Forward.
Variable (X: Const) (E: list deq).
Implicit Types (x y z: nat) (c: nat).
Definition encs theta: fin -> exp X := theta >> enc.
Lemma forward_typing theta:
nil ⊩( 3) encs theta : Gamma__dwk E.
Proof.
intros ?? <- % nth_error_In % repeated_in.
eapply typing_enc.
Qed.
Lemma H10_DWK : H10 E -> SOU X 3 (H10_to_DWK X E).
Proof.
intros [theta H].
exists []. exists (encs theta). split.
now eapply forward_typing. eapply equiv_pointwise_eqs.
intros s t H'; cbn.
change s with (fst (s, t)); change t with (snd (s, t)) at 2.
remember (s,t) as q. clear Heqq.
eapply in_Equations in H' as (e & ? & ?).
eapply H in H0.
destruct e; cbn in *; intuition; subst.
all: try eapply forward_add. all: try eapply forward_consts.
all: try eapply forward_mult. all: try eapply forward_vars.
all: unfold encs, funcomp; eauto. try eapply enc_sol_encodes.
all: inv H0; eauto.
Qed.
End Forward.
Section Backward.
Variable (X: Const).
Implicit Types (sigma: nat -> exp X) (x y z c n: nat).
Definition sub_sol sigma x :=
match dec_enc (sigma x) with
| inl (exist _ k _) => k
| inr _ => 0
end.
Lemma sub_sol_enc sigma x n:
sigma x = enc n -> sub_sol sigma x = n.
Proof.
intros H; unfold sub_sol; destruct dec_enc as [[m H']|H'].
rewrite H' in H; eapply enc_injective in H; eauto.
eapply H' in H; intuition.
Qed.
Lemma DWK_H10 E: SOU X 3 (H10_to_DWK X E) -> H10 E.
Proof.
rewrite SOU_NSOU; eauto. intros (Delta & tau & T & EQ & N).
exists (sub_sol tau). specialize (equiv_eqs_pointwise _ _ EQ) as EQ'.
assert (forall e, e ∈ Eqs E -> tau • fst e ≡ tau • snd e) as H by now intros []; eauto. clear EQ'.
intros e Hin. destruct e; econstructor.
all: edestruct (@in_Equations X (varEQ x) E) as [_ EQx]; mp EQx;
[eexists; intuition eauto; cbn; intuition | eapply H in EQx].
2, 3: edestruct (@in_Equations X (varEQ y) E) as [_ EQy]; mp EQy;
[eexists; intuition eauto; cbn; intuition| eapply H in EQy].
2, 3: edestruct (@in_Equations X (varEQ z) E) as [_ EQz]; mp EQz;
[eexists; intuition eauto; cbn; intuition| eapply H in EQz].
all: eapply backward_vars in EQx as [n]; eauto.
2 - 3: eapply backward_vars in EQy as [m]; eauto.
2 - 3: eapply backward_vars in EQz as [p]; eauto.
all: repeat (erewrite sub_sol_enc; [|eauto]).
- eapply backward_consts; eauto.
eapply H, in_Equations; eexists; intuition eauto.
cbn; intuition.
- eapply backward_add; eauto.
eapply H, in_Equations; eexists; intuition eauto.
cbn; intuition.
- eapply backward_mult; eauto.
eapply H, in_Equations; eexists; intuition eauto.
cbn; intuition.
Qed.
End Backward.
Lemma Dowek X : H10 ⪯ SOU X 3.
Proof.
exists (H10_to_DWK X). intros E.
split; eauto using H10_DWK, DWK_H10.
Qed.
Variable (X: Const).
Implicit Types (sigma: nat -> exp X) (x y z c n: nat).
Definition sub_sol sigma x :=
match dec_enc (sigma x) with
| inl (exist _ k _) => k
| inr _ => 0
end.
Lemma sub_sol_enc sigma x n:
sigma x = enc n -> sub_sol sigma x = n.
Proof.
intros H; unfold sub_sol; destruct dec_enc as [[m H']|H'].
rewrite H' in H; eapply enc_injective in H; eauto.
eapply H' in H; intuition.
Qed.
Lemma DWK_H10 E: SOU X 3 (H10_to_DWK X E) -> H10 E.
Proof.
rewrite SOU_NSOU; eauto. intros (Delta & tau & T & EQ & N).
exists (sub_sol tau). specialize (equiv_eqs_pointwise _ _ EQ) as EQ'.
assert (forall e, e ∈ Eqs E -> tau • fst e ≡ tau • snd e) as H by now intros []; eauto. clear EQ'.
intros e Hin. destruct e; econstructor.
all: edestruct (@in_Equations X (varEQ x) E) as [_ EQx]; mp EQx;
[eexists; intuition eauto; cbn; intuition | eapply H in EQx].
2, 3: edestruct (@in_Equations X (varEQ y) E) as [_ EQy]; mp EQy;
[eexists; intuition eauto; cbn; intuition| eapply H in EQy].
2, 3: edestruct (@in_Equations X (varEQ z) E) as [_ EQz]; mp EQz;
[eexists; intuition eauto; cbn; intuition| eapply H in EQz].
all: eapply backward_vars in EQx as [n]; eauto.
2 - 3: eapply backward_vars in EQy as [m]; eauto.
2 - 3: eapply backward_vars in EQz as [p]; eauto.
all: repeat (erewrite sub_sol_enc; [|eauto]).
- eapply backward_consts; eauto.
eapply H, in_Equations; eexists; intuition eauto.
cbn; intuition.
- eapply backward_add; eauto.
eapply H, in_Equations; eexists; intuition eauto.
cbn; intuition.
- eapply backward_mult; eauto.
eapply H, in_Equations; eexists; intuition eauto.
cbn; intuition.
Qed.
End Backward.
Lemma Dowek X : H10 ⪯ SOU X 3.
Proof.
exists (H10_to_DWK X). intros E.
split; eauto using H10_DWK, DWK_H10.
Qed.