Require Import List Omega Morphisms std calculus higher_order_unification systemunification.
Import ListNotations.
Import ListNotations.
Section NthOrderUnificationDefinition.
Context {n: nat} {X: Const}.
Class orduni :=
{
Gamma₀ : ctx;
s₀ : exp X;
t₀ : exp X;
A₀ : type;
H1₀ : Gamma₀ ⊢(n) s₀ : A₀;
H2₀ : Gamma₀ ⊢(n) t₀ : A₀
}.
Definition OU (I: orduni) :=
exists (Delta: ctx) (sigma: fin -> exp X), Delta ⊩(n) sigma : Gamma₀ /\ sigma • s₀ ≡ sigma • t₀.
End NthOrderUnificationDefinition.
Arguments orduni _ : clear implicits.
Arguments OU _ : clear implicits.
Hint Resolve @H1₀ @H2₀.
Context {n: nat} {X: Const}.
Class orduni :=
{
Gamma₀ : ctx;
s₀ : exp X;
t₀ : exp X;
A₀ : type;
H1₀ : Gamma₀ ⊢(n) s₀ : A₀;
H2₀ : Gamma₀ ⊢(n) t₀ : A₀
}.
Definition OU (I: orduni) :=
exists (Delta: ctx) (sigma: fin -> exp X), Delta ⊩(n) sigma : Gamma₀ /\ sigma • s₀ ≡ sigma • t₀.
End NthOrderUnificationDefinition.
Arguments orduni _ : clear implicits.
Arguments OU _ : clear implicits.
Hint Resolve @H1₀ @H2₀.
Section NthOrderSystemUnification.
Variable (X: Const).
Implicit Types (sigma: fin -> exp X) (e: eq X) (E : eqs X).
Definition eq_ordertyping n Gamma e A := Gamma ⊢(n) fst e : A /\ Gamma ⊢(n) snd e : A.
Notation "Gamma ⊢₂( n ')' e : A" := (eq_ordertyping n Gamma e A) (at level 80, e at level 99).
Reserved Notation "Gamma ⊢₊₊( n ) E : L" (at level 80, E at level 99).
Inductive eqs_ordertyping Gamma n : eqs X -> list type -> Prop :=
| eqs_ordertyping_nil: Gamma ⊢₊₊(n) nil : nil
| eqs_ordertyping_cons s t A E L: Gamma ⊢(n) s : A -> Gamma ⊢(n) t : A -> Gamma ⊢₊₊(n) E : L -> Gamma ⊢₊₊(n) ((s,t) :: E) : A :: L
where "Gamma ⊢₊₊( n ) E : L" := (eqs_ordertyping Gamma n E L).
Hint Constructors eqs_ordertyping.
Lemma eqs_ordertyping_step Gamma n E L: Gamma ⊢₊₊( n ) E : L -> Gamma ⊢₊₊(S n) E : L.
Proof. induction 1; eauto. Qed.
Lemma eqs_ordertyping_monotone Gamma n m E L: n <= m -> Gamma ⊢₊₊( n ) E : L -> Gamma ⊢₊₊(m) E : L.
Proof. induction 1; eauto using eqs_ordertyping_step. Qed.
Lemma eqs_ordertyping_soundness Gamma n E L: Gamma ⊢₊₊( n ) E : L -> Gamma ⊢₊₊ E : L.
Proof. induction 1; eauto using eqs_typing. Qed.
Lemma left_ordertyping Gamma n E L: Gamma ⊢₊₊(n) E : L -> Gamma ⊢₊(n) left_side E : L.
Proof. induction 1; cbn; eauto. Qed.
Lemma right_ordertyping Gamma n E L: Gamma ⊢₊₊(n) E : L -> Gamma ⊢₊(n) right_side E : L.
Proof. induction 1; cbn; eauto. Qed.
Lemma ordertyping_combine Gamma n E L:
Gamma ⊢₊(n) left_side E : L -> Gamma ⊢₊(n) right_side E : L -> Gamma ⊢₊₊(n) E : L.
Proof.
intros H1 H2; induction E in L, H1, H2 |-*; inv H1; inv H2; eauto.
destruct a; eauto.
Qed.
Hint Resolve left_typing right_typing left_ordertyping right_ordertyping.
Hint Rewrite Vars'_cons Vars'_app : simplify.
Hint Rewrite left_subst_eqs right_subst_eqs : simplify.
Lemma eqs_ordertyping_preservation_subst n Gamma E L Delta sigma:
Gamma ⊢₊₊(n) E : L -> Delta ⊩(n) sigma : Gamma -> Delta ⊢₊₊(n) sigma •₊₊ E : L.
Proof. induction 1; cbn; eauto. Qed.
Class ordsysuni (n: nat) :=
{
Gamma₀' : ctx;
E₀' : eqs X;
L₀' : list type;
H₀' : Gamma₀' ⊢₊₊(n) E₀' : L₀';
}.
Definition SOU n (I: ordsysuni n) :=
exists (Delta: ctx) (sigma: fin -> exp X), Delta ⊩(n) sigma : Gamma₀' /\ (sigma •₊ left_side E₀') ≡₊ (sigma •₊ right_side E₀').
Arguments SOU: clear implicits.
Hint Resolve @H₀'.
Lemma linearize_terms_ordertyping n Gamma (S: list (exp X)) L A:
ord' L < n -> ord A <= n ->
Gamma ⊢₊(n) S : L -> Gamma ⊢(n) linearize_terms S : (Arr (rev L) A) → A.
Proof.
intros H; econstructor; eapply AppR_ordertyping with (L0 := L).
eapply orderlisttyping_preservation_under_renaming; eauto.
intros x ?; cbn; eauto.
econstructor; eauto; simplify; cbn; intuition.
Qed.
Hint Resolve linearize_terms_ordertyping.
Global Program Instance orduni_ordsysuni n (I: orduni n X): ordsysuni n :=
{ Gamma₀' := Gamma₀; E₀' := [(s₀, t₀)]; L₀' := [A₀]; H₀' := _; }.
Global Program Instance ordsysuni_orduni {n} (I: ordsysuni n): ord' L₀' < n -> orduni n X :=
{
Gamma₀ := Gamma₀';
s₀ := linearize_terms (left_side E₀');
t₀ := linearize_terms (right_side E₀');
A₀ := (Arr (rev L₀') alpha) → alpha;
H1₀ := _;
H2₀ := _;
}.
Next Obligation.
assert (1 <= n) by (destruct n; omega); eauto.
Qed.
Next Obligation.
assert (1 <= n) by (destruct n; omega); eauto.
Qed.
Lemma OU_SOU n: OU n X ⪯ SOU n.
Proof.
exists (orduni_ordsysuni n); intros I.
split; intros (Delta & sigma & H1 & H2); exists Delta; exists sigma; intuition.
eapply equiv_pointwise_eqs; cbn; firstorder; injection H; intros; subst; eauto.
eapply equiv_eqs_pointwise; cbn; eauto; cbn; intuition.
Qed.
Lemma SOU_OU n (I: ordsysuni n) (H: ord' L₀' < n):
SOU n I <-> OU n X (ordsysuni_orduni I H).
Proof.
split; intros (Delta & sigma & H1 & H2); exists Delta; exists sigma; intuition;
cbn [s₀ t₀ ordsysuni_orduni] in *.
now rewrite !linearize_terms_subst, linearize_terms_equiv.
now rewrite <-linearize_terms_equiv, <-!linearize_terms_subst.
Qed.
End NthOrderSystemUnification.
Arguments SOU : clear implicits.
Arguments ordsysuni : clear implicits.
Arguments Gamma₀' {_} {_} {_}.
Arguments E₀' {_} {_} {_}.
Arguments L₀' {_} {_} {_}.
Notation "Gamma ⊢₊₊( n ) E : L" := (eqs_ordertyping _ Gamma n E L)(at level 80, E at level 99).
Notation "Gamma ⊢₂( n ')' e : A" := (eq_ordertyping _ n Gamma e A) (at level 80, e at level 99).
Hint Resolve eqs_ordertyping_soundness.
Variable (X: Const).
Implicit Types (sigma: fin -> exp X) (e: eq X) (E : eqs X).
Definition eq_ordertyping n Gamma e A := Gamma ⊢(n) fst e : A /\ Gamma ⊢(n) snd e : A.
Notation "Gamma ⊢₂( n ')' e : A" := (eq_ordertyping n Gamma e A) (at level 80, e at level 99).
Reserved Notation "Gamma ⊢₊₊( n ) E : L" (at level 80, E at level 99).
Inductive eqs_ordertyping Gamma n : eqs X -> list type -> Prop :=
| eqs_ordertyping_nil: Gamma ⊢₊₊(n) nil : nil
| eqs_ordertyping_cons s t A E L: Gamma ⊢(n) s : A -> Gamma ⊢(n) t : A -> Gamma ⊢₊₊(n) E : L -> Gamma ⊢₊₊(n) ((s,t) :: E) : A :: L
where "Gamma ⊢₊₊( n ) E : L" := (eqs_ordertyping Gamma n E L).
Hint Constructors eqs_ordertyping.
Lemma eqs_ordertyping_step Gamma n E L: Gamma ⊢₊₊( n ) E : L -> Gamma ⊢₊₊(S n) E : L.
Proof. induction 1; eauto. Qed.
Lemma eqs_ordertyping_monotone Gamma n m E L: n <= m -> Gamma ⊢₊₊( n ) E : L -> Gamma ⊢₊₊(m) E : L.
Proof. induction 1; eauto using eqs_ordertyping_step. Qed.
Lemma eqs_ordertyping_soundness Gamma n E L: Gamma ⊢₊₊( n ) E : L -> Gamma ⊢₊₊ E : L.
Proof. induction 1; eauto using eqs_typing. Qed.
Lemma left_ordertyping Gamma n E L: Gamma ⊢₊₊(n) E : L -> Gamma ⊢₊(n) left_side E : L.
Proof. induction 1; cbn; eauto. Qed.
Lemma right_ordertyping Gamma n E L: Gamma ⊢₊₊(n) E : L -> Gamma ⊢₊(n) right_side E : L.
Proof. induction 1; cbn; eauto. Qed.
Lemma ordertyping_combine Gamma n E L:
Gamma ⊢₊(n) left_side E : L -> Gamma ⊢₊(n) right_side E : L -> Gamma ⊢₊₊(n) E : L.
Proof.
intros H1 H2; induction E in L, H1, H2 |-*; inv H1; inv H2; eauto.
destruct a; eauto.
Qed.
Hint Resolve left_typing right_typing left_ordertyping right_ordertyping.
Hint Rewrite Vars'_cons Vars'_app : simplify.
Hint Rewrite left_subst_eqs right_subst_eqs : simplify.
Lemma eqs_ordertyping_preservation_subst n Gamma E L Delta sigma:
Gamma ⊢₊₊(n) E : L -> Delta ⊩(n) sigma : Gamma -> Delta ⊢₊₊(n) sigma •₊₊ E : L.
Proof. induction 1; cbn; eauto. Qed.
Class ordsysuni (n: nat) :=
{
Gamma₀' : ctx;
E₀' : eqs X;
L₀' : list type;
H₀' : Gamma₀' ⊢₊₊(n) E₀' : L₀';
}.
Definition SOU n (I: ordsysuni n) :=
exists (Delta: ctx) (sigma: fin -> exp X), Delta ⊩(n) sigma : Gamma₀' /\ (sigma •₊ left_side E₀') ≡₊ (sigma •₊ right_side E₀').
Arguments SOU: clear implicits.
Hint Resolve @H₀'.
Lemma linearize_terms_ordertyping n Gamma (S: list (exp X)) L A:
ord' L < n -> ord A <= n ->
Gamma ⊢₊(n) S : L -> Gamma ⊢(n) linearize_terms S : (Arr (rev L) A) → A.
Proof.
intros H; econstructor; eapply AppR_ordertyping with (L0 := L).
eapply orderlisttyping_preservation_under_renaming; eauto.
intros x ?; cbn; eauto.
econstructor; eauto; simplify; cbn; intuition.
Qed.
Hint Resolve linearize_terms_ordertyping.
Global Program Instance orduni_ordsysuni n (I: orduni n X): ordsysuni n :=
{ Gamma₀' := Gamma₀; E₀' := [(s₀, t₀)]; L₀' := [A₀]; H₀' := _; }.
Global Program Instance ordsysuni_orduni {n} (I: ordsysuni n): ord' L₀' < n -> orduni n X :=
{
Gamma₀ := Gamma₀';
s₀ := linearize_terms (left_side E₀');
t₀ := linearize_terms (right_side E₀');
A₀ := (Arr (rev L₀') alpha) → alpha;
H1₀ := _;
H2₀ := _;
}.
Next Obligation.
assert (1 <= n) by (destruct n; omega); eauto.
Qed.
Next Obligation.
assert (1 <= n) by (destruct n; omega); eauto.
Qed.
Lemma OU_SOU n: OU n X ⪯ SOU n.
Proof.
exists (orduni_ordsysuni n); intros I.
split; intros (Delta & sigma & H1 & H2); exists Delta; exists sigma; intuition.
eapply equiv_pointwise_eqs; cbn; firstorder; injection H; intros; subst; eauto.
eapply equiv_eqs_pointwise; cbn; eauto; cbn; intuition.
Qed.
Lemma SOU_OU n (I: ordsysuni n) (H: ord' L₀' < n):
SOU n I <-> OU n X (ordsysuni_orduni I H).
Proof.
split; intros (Delta & sigma & H1 & H2); exists Delta; exists sigma; intuition;
cbn [s₀ t₀ ordsysuni_orduni] in *.
now rewrite !linearize_terms_subst, linearize_terms_equiv.
now rewrite <-linearize_terms_equiv, <-!linearize_terms_subst.
Qed.
End NthOrderSystemUnification.
Arguments SOU : clear implicits.
Arguments ordsysuni : clear implicits.
Arguments Gamma₀' {_} {_} {_}.
Arguments E₀' {_} {_} {_}.
Arguments L₀' {_} {_} {_}.
Notation "Gamma ⊢₊₊( n ) E : L" := (eqs_ordertyping _ Gamma n E L)(at level 80, E at level 99).
Notation "Gamma ⊢₂( n ')' e : A" := (eq_ordertyping _ n Gamma e A) (at level 80, e at level 99).
Hint Resolve eqs_ordertyping_soundness.
Definition NOU {X: Const} n (I: orduni n X) :=
exists Delta sigma, Delta ⊩(n) sigma : Gamma₀ /\ sigma • s₀ ≡ sigma • t₀ /\ forall x, normal (sigma x).
Definition NSOU {X: Const} n (I: ordsysuni X n) :=
exists Delta sigma, Delta ⊩(n) sigma : Gamma₀' /\ (sigma •₊ left_side E₀') ≡₊ (sigma •₊ right_side E₀') /\
forall x, normal (sigma x).
Section SubstitutionTransformations.
Variable (X: Const) (n: nat) (s t: exp X) (A: type) (Gamma: ctx).
Hypothesis (Leq: 1 <= n).
Hypothesis (T1: Gamma ⊢(n) s : A) (T2: Gamma ⊢(n) t : A).
Implicit Types (Delta: ctx) (sigma : fin -> exp X).
Lemma ordertyping_normalise_subst sigma Delta :
Delta ⊩(n) sigma : Gamma -> {tau | (forall x : fin, sigma x >* tau x) /\
(forall x : nat, x ∈ dom Gamma -> normal (tau x)) /\
Delta ⊩(n) tau : Gamma}.
Proof.
intros H; eapply ordertypingSubst_soundness in H as H';
eapply normalise_subst in H' as [tau].
exists tau; intuition. intros ???.
eapply ordertyping_preservation_under_steps; [eapply H0 |].
eapply H; eauto.
Qed.
End SubstitutionTransformations.
Section Normalisation.
Variable (X: Const).
Arguments s₀ {_} {_} _.
Arguments t₀ {_} {_} _.
Arguments Gamma₀ {_} {_} _.
Arguments A₀ {_} {_} _.
Arguments sᵤ {_} _.
Arguments tᵤ {_} _.
Arguments Gammaᵤ {_} _.
Arguments Aᵤ {_} _.
Lemma U_NU I: U X I <-> NU I.
Proof.
split; intros (Delta & sigma & H1 & H2); [| exists Delta; exists sigma; intuition].
eapply normalise_subst in H1 as (tau & H5 & H6 & H7).
pose (theta x := if nth (Gammaᵤ I) x then tau x else var x).
exists Delta. exists theta. intuition.
+ intros ???; unfold theta; rewrite H; eapply H7; eauto.
+ rewrite subst_pointwise_equiv with (sigma0 := theta) (tau0 := sigma).
rewrite subst_pointwise_equiv with (sigma0 := theta) (tau0 := sigma); eauto.
all: intros ? H; eapply typing_variables in H; eauto; domin H.
all: unfold theta; now rewrite H, H5.
+ unfold theta; destruct nth eqn: ?; [|eauto].
domin Heqo; eauto.
Qed.
Lemma OU_NOU n I: 1 <= n -> OU n X I <-> NOU n I.
Proof.
intros Leq; split; intros (Delta & sigma & H1 & H2); [| exists Delta; exists sigma; intuition].
eapply ordertyping_normalise_subst in H1 as (tau & H5 & H6 & H7).
pose (theta x := if nth (Gamma₀ I) x then tau x else var x).
exists Delta. exists theta. intuition.
+ intros ???; unfold theta; rewrite H; eapply H7; eauto.
+ rewrite subst_pointwise_equiv with (sigma0 := theta) (tau0 := sigma).
rewrite subst_pointwise_equiv with (sigma0 := theta) (tau0 := sigma); eauto.
all: intros ? H; eapply typing_variables in H; eauto; domin H.
all: unfold theta; now rewrite H, H5.
+ unfold theta; destruct nth eqn: ?; [|eauto]; domin Heqo; eauto.
Qed.
Lemma SOU_NSOU n I: 1 <= n -> SOU X n I <-> NSOU n I.
Proof.
intros Leq; split; intros (Delta & sigma & H1 & H2); [| exists Delta; exists sigma; intuition].
eapply ordertyping_normalise_subst in H1 as (tau & H5 & H6 & H7).
pose (theta x := if nth (@Gamma₀' _ _ I) x then tau x else var x).
exists Delta. exists theta. intuition.
+ intros ???; unfold theta; rewrite H; eapply H7; eauto.
+ eapply equiv_pointwise_eqs; intros.
eapply equiv_eqs_pointwise in H2; intros; eauto.
rewrite subst_pointwise_equiv with (sigma0 := theta) (tau0 := sigma).
rewrite subst_pointwise_equiv with (sigma0 := theta) (tau0 := sigma); eauto.
all: intros ? ?; enough (x ∈ dom Gamma₀') as D;
[domin D; unfold theta; rewrite D; eauto|].
all: eapply Vars_listtyping.
2, 4: eapply in_flat_map; eexists; (intuition eauto).
2: change t with (snd (s, t)); eapply in_map; eauto.
2: change s with (fst (s, t)); eapply in_map; eauto.
all: eauto using eqs_ordertyping_soundness, left_typing, right_typing, @H₀'.
+ unfold theta; destruct nth eqn: ?; [|eauto].
domin Heqo; eauto.
Qed.
Lemma OU_reduction n (I I': orduni n X):
s₀ I ≡ s₀ I' -> t₀ I ≡ t₀ I' ->
Gamma₀ I = Gamma₀ I' -> A₀ I = A₀ I' ->
OU n X I -> OU n X I'.
Proof.
intros H1 H2 H3 H4; intros (Delta & sigma & T & N); exists Delta; exists sigma; split.
rewrite <-H3; eauto. now rewrite <-H1, <-H2, N.
Qed.
Program Instance orduni_normalise n (I: orduni n X) : orduni n X :=
{ Gamma₀ := Gamma₀ I; s₀ := eta₀ (s₀ I) H1₀; t₀ := eta₀ (t₀ I) H2₀; A₀ := A₀ I }.
Next Obligation.
eapply ordertyping_preservation_under_steps. rewrite <-eta₀_correct. all: eauto.
Qed.
Next Obligation.
eapply ordertyping_preservation_under_steps. rewrite <-eta₀_correct. all: eauto.
Qed.
Lemma orduni_normalise_correct n I:
OU n X I <-> OU n X (orduni_normalise n I).
Proof.
split; intros H; [eapply @OU_reduction|eapply @OU_reduction with (I := orduni_normalise n I)].
all: eauto; cbn; eapply equiv_join.
1, 3, 6, 8: rewrite eta₀_correct. all: reflexivity.
Qed.
End Normalisation.
exists Delta sigma, Delta ⊩(n) sigma : Gamma₀ /\ sigma • s₀ ≡ sigma • t₀ /\ forall x, normal (sigma x).
Definition NSOU {X: Const} n (I: ordsysuni X n) :=
exists Delta sigma, Delta ⊩(n) sigma : Gamma₀' /\ (sigma •₊ left_side E₀') ≡₊ (sigma •₊ right_side E₀') /\
forall x, normal (sigma x).
Section SubstitutionTransformations.
Variable (X: Const) (n: nat) (s t: exp X) (A: type) (Gamma: ctx).
Hypothesis (Leq: 1 <= n).
Hypothesis (T1: Gamma ⊢(n) s : A) (T2: Gamma ⊢(n) t : A).
Implicit Types (Delta: ctx) (sigma : fin -> exp X).
Lemma ordertyping_normalise_subst sigma Delta :
Delta ⊩(n) sigma : Gamma -> {tau | (forall x : fin, sigma x >* tau x) /\
(forall x : nat, x ∈ dom Gamma -> normal (tau x)) /\
Delta ⊩(n) tau : Gamma}.
Proof.
intros H; eapply ordertypingSubst_soundness in H as H';
eapply normalise_subst in H' as [tau].
exists tau; intuition. intros ???.
eapply ordertyping_preservation_under_steps; [eapply H0 |].
eapply H; eauto.
Qed.
End SubstitutionTransformations.
Section Normalisation.
Variable (X: Const).
Arguments s₀ {_} {_} _.
Arguments t₀ {_} {_} _.
Arguments Gamma₀ {_} {_} _.
Arguments A₀ {_} {_} _.
Arguments sᵤ {_} _.
Arguments tᵤ {_} _.
Arguments Gammaᵤ {_} _.
Arguments Aᵤ {_} _.
Lemma U_NU I: U X I <-> NU I.
Proof.
split; intros (Delta & sigma & H1 & H2); [| exists Delta; exists sigma; intuition].
eapply normalise_subst in H1 as (tau & H5 & H6 & H7).
pose (theta x := if nth (Gammaᵤ I) x then tau x else var x).
exists Delta. exists theta. intuition.
+ intros ???; unfold theta; rewrite H; eapply H7; eauto.
+ rewrite subst_pointwise_equiv with (sigma0 := theta) (tau0 := sigma).
rewrite subst_pointwise_equiv with (sigma0 := theta) (tau0 := sigma); eauto.
all: intros ? H; eapply typing_variables in H; eauto; domin H.
all: unfold theta; now rewrite H, H5.
+ unfold theta; destruct nth eqn: ?; [|eauto].
domin Heqo; eauto.
Qed.
Lemma OU_NOU n I: 1 <= n -> OU n X I <-> NOU n I.
Proof.
intros Leq; split; intros (Delta & sigma & H1 & H2); [| exists Delta; exists sigma; intuition].
eapply ordertyping_normalise_subst in H1 as (tau & H5 & H6 & H7).
pose (theta x := if nth (Gamma₀ I) x then tau x else var x).
exists Delta. exists theta. intuition.
+ intros ???; unfold theta; rewrite H; eapply H7; eauto.
+ rewrite subst_pointwise_equiv with (sigma0 := theta) (tau0 := sigma).
rewrite subst_pointwise_equiv with (sigma0 := theta) (tau0 := sigma); eauto.
all: intros ? H; eapply typing_variables in H; eauto; domin H.
all: unfold theta; now rewrite H, H5.
+ unfold theta; destruct nth eqn: ?; [|eauto]; domin Heqo; eauto.
Qed.
Lemma SOU_NSOU n I: 1 <= n -> SOU X n I <-> NSOU n I.
Proof.
intros Leq; split; intros (Delta & sigma & H1 & H2); [| exists Delta; exists sigma; intuition].
eapply ordertyping_normalise_subst in H1 as (tau & H5 & H6 & H7).
pose (theta x := if nth (@Gamma₀' _ _ I) x then tau x else var x).
exists Delta. exists theta. intuition.
+ intros ???; unfold theta; rewrite H; eapply H7; eauto.
+ eapply equiv_pointwise_eqs; intros.
eapply equiv_eqs_pointwise in H2; intros; eauto.
rewrite subst_pointwise_equiv with (sigma0 := theta) (tau0 := sigma).
rewrite subst_pointwise_equiv with (sigma0 := theta) (tau0 := sigma); eauto.
all: intros ? ?; enough (x ∈ dom Gamma₀') as D;
[domin D; unfold theta; rewrite D; eauto|].
all: eapply Vars_listtyping.
2, 4: eapply in_flat_map; eexists; (intuition eauto).
2: change t with (snd (s, t)); eapply in_map; eauto.
2: change s with (fst (s, t)); eapply in_map; eauto.
all: eauto using eqs_ordertyping_soundness, left_typing, right_typing, @H₀'.
+ unfold theta; destruct nth eqn: ?; [|eauto].
domin Heqo; eauto.
Qed.
Lemma OU_reduction n (I I': orduni n X):
s₀ I ≡ s₀ I' -> t₀ I ≡ t₀ I' ->
Gamma₀ I = Gamma₀ I' -> A₀ I = A₀ I' ->
OU n X I -> OU n X I'.
Proof.
intros H1 H2 H3 H4; intros (Delta & sigma & T & N); exists Delta; exists sigma; split.
rewrite <-H3; eauto. now rewrite <-H1, <-H2, N.
Qed.
Program Instance orduni_normalise n (I: orduni n X) : orduni n X :=
{ Gamma₀ := Gamma₀ I; s₀ := eta₀ (s₀ I) H1₀; t₀ := eta₀ (t₀ I) H2₀; A₀ := A₀ I }.
Next Obligation.
eapply ordertyping_preservation_under_steps. rewrite <-eta₀_correct. all: eauto.
Qed.
Next Obligation.
eapply ordertyping_preservation_under_steps. rewrite <-eta₀_correct. all: eauto.
Qed.
Lemma orduni_normalise_correct n I:
OU n X I <-> OU n X (orduni_normalise n I).
Proof.
split; intros H; [eapply @OU_reduction|eapply @OU_reduction with (I := orduni_normalise n I)].
all: eauto; cbn; eapply equiv_join.
1, 3, 6, 8: rewrite eta₀_correct. all: reflexivity.
Qed.
End Normalisation.