Library ProgrammingTuringMachines.TM.Code.CaseSum
Variable (sigX sigY : finType).
Hypothesis (codX : codable sigX X) (codY : codable sigY Y).
Definition CaseSum_Rel : Rel (tapes (sigSum sigX sigY)^+ 1) (bool * tapes ((sigSum sigX sigY)^+) 1) :=
Mk_R_p (
fun tin '(yout, tout) =>
forall s : X + Y,
tin ≃ s ->
match yout, s with
| true, inl x => tout ≃ x
| false, inr y => tout ≃ y
| _, _ => False
end).
Definition CaseSum : pTM (sigSum sigX sigY)^+ bool 1 :=
Move R;; (* skip the START symbol *)
Switch (ReadChar) (* read the "constructor" symbol *)
(fun o => match o with (* Write a new START symbol and terminate in the corresponding label *)
| Some (inr sigSum_inl) => Return (Write (inl START)) true (* inl *)
| Some (inr sigSum_inr) => Return (Write (inl START)) false (* inr *)
| _ => Return (Nop) true (* invalid input *)
end).
Definition CaseSum_steps := 5.
Lemma CaseSum_Sem : CaseSum ⊨c(CaseSum_steps) CaseSum_Rel.
Proof.
unfold CaseSum_steps. eapply RealiseIn_monotone.
{ unfold CaseSum. TM_Correct. }
{ Unshelve. 4,10,11: constructor. all: cbn. all: omega. }
{
intros tin (yout&tout) H.
intros s HEncS. destruct HEncS as (ls&HEncS). TMSimp; clear_trivial_eqs. clear HEncS tin.
destruct s as [x|y]; cbn in *; TMSimp.
- (* s = inl x *) now repeat econstructor.
- (* s = inr y *) now repeat econstructor.
}
Qed.
Section SumConstr.
Definition Constr_inl_Rel : Rel (tapes (sigSum sigX sigY)^+ 1) (unit * tapes (sigSum sigX sigY)^+ 1) :=
Mk_R_p (ignoreParam (fun tin tout => forall x:X, tin ≃ x -> tout ≃ inl x)).
Definition Constr_inr_Rel : Rel (tapes (sigSum sigX sigY)^+ 1) (unit * tapes (sigSum sigX sigY)^+ 1) :=
Mk_R_p (ignoreParam (fun tin tout => forall y:Y, tin ≃ y -> tout ≃ inr y)).
Definition Constr_inl : pTM (sigSum sigX sigY)^+ unit 1 :=
WriteMove (inr sigSum_inl) L;; Write (inl START).
Definition Constr_inr : pTM (sigSum sigX sigY)^+ unit 1 :=
WriteMove (inr sigSum_inr) L;; Write (inl START).
Definition Constr_inl_steps := 3.
Lemma Constr_inl_Sem : Constr_inl ⊨c(Constr_inl_steps) Constr_inl_Rel.
Proof.
unfold Constr_inl_steps. eapply RealiseIn_monotone.
{ unfold Constr_inl. TM_Correct. }
{ cbn. reflexivity. }
{
intros tin (()&tout) H.
cbn. intros x HEncX. destruct HEncX as (ls&HEncX). TMSimp; clear_trivial_eqs.
repeat econstructor. f_equal. simpl_tape. cbn. reflexivity.
}
Qed.
Definition Constr_inr_steps := 3.
Lemma Constr_inr_Sem : Constr_inr ⊨c(Constr_inl_steps) Constr_inr_Rel.
Proof.
unfold Constr_inr_steps. eapply RealiseIn_monotone.
{ unfold Constr_inr. TM_Correct. }
{ cbn. reflexivity. }
{
intros tin (()&tout) H.
cbn. intros y HEncY. destruct HEncY as (ls&HEncY). TMSimp; clear_trivial_eqs.
repeat econstructor. f_equal. simpl_tape. cbn. reflexivity.
}
Qed.
End SumConstr.
End CaseSum.
Arguments CaseSum : simpl never.
Arguments Constr_inl : simpl never.
Arguments Constr_inr : simpl never.
Definition Constr_inl_Rel : Rel (tapes (sigSum sigX sigY)^+ 1) (unit * tapes (sigSum sigX sigY)^+ 1) :=
Mk_R_p (ignoreParam (fun tin tout => forall x:X, tin ≃ x -> tout ≃ inl x)).
Definition Constr_inr_Rel : Rel (tapes (sigSum sigX sigY)^+ 1) (unit * tapes (sigSum sigX sigY)^+ 1) :=
Mk_R_p (ignoreParam (fun tin tout => forall y:Y, tin ≃ y -> tout ≃ inr y)).
Definition Constr_inl : pTM (sigSum sigX sigY)^+ unit 1 :=
WriteMove (inr sigSum_inl) L;; Write (inl START).
Definition Constr_inr : pTM (sigSum sigX sigY)^+ unit 1 :=
WriteMove (inr sigSum_inr) L;; Write (inl START).
Definition Constr_inl_steps := 3.
Lemma Constr_inl_Sem : Constr_inl ⊨c(Constr_inl_steps) Constr_inl_Rel.
Proof.
unfold Constr_inl_steps. eapply RealiseIn_monotone.
{ unfold Constr_inl. TM_Correct. }
{ cbn. reflexivity. }
{
intros tin (()&tout) H.
cbn. intros x HEncX. destruct HEncX as (ls&HEncX). TMSimp; clear_trivial_eqs.
repeat econstructor. f_equal. simpl_tape. cbn. reflexivity.
}
Qed.
Definition Constr_inr_steps := 3.
Lemma Constr_inr_Sem : Constr_inr ⊨c(Constr_inl_steps) Constr_inr_Rel.
Proof.
unfold Constr_inr_steps. eapply RealiseIn_monotone.
{ unfold Constr_inr. TM_Correct. }
{ cbn. reflexivity. }
{
intros tin (()&tout) H.
cbn. intros y HEncY. destruct HEncY as (ls&HEncY). TMSimp; clear_trivial_eqs.
repeat econstructor. f_equal. simpl_tape. cbn. reflexivity.
}
Qed.
End SumConstr.
End CaseSum.
Arguments CaseSum : simpl never.
Arguments Constr_inl : simpl never.
Arguments Constr_inr : simpl never.
Ltac smpl_TM_CaseSum :=
lazymatch goal with
| [ |- CaseSum _ _ ⊨ _ ] => eapply RealiseIn_Realise; apply CaseSum_Sem
| [ |- CaseSum _ _ ⊨c(_) _ ] => apply CaseSum_Sem
| [ |- projT1 (CaseSum _ _) ↓ _ ] => eapply RealiseIn_TerminatesIn; apply CaseSum_Sem
| [ |- Constr_inr _ _ ⊨ _ ] => eapply RealiseIn_Realise; apply Constr_inr_Sem
| [ |- Constr_inr _ _ ⊨c(_) _ ] => apply Constr_inr_Sem
| [ |- projT1 (Constr_inr _ _) ↓ _ ] => eapply RealiseIn_TerminatesIn; apply Constr_inr_Sem
| [ |- Constr_inl _ _ ⊨ _ ] => eapply RealiseIn_Realise; apply Constr_inl_Sem
| [ |- Constr_inl _ _ ⊨c(_) _ ] => apply Constr_inl_Sem
| [ |- projT1 (Constr_inl _ _) ↓ _ ] => eapply RealiseIn_TerminatesIn; apply Constr_inl_Sem
end.
Smpl Add smpl_TM_CaseSum : TM_Correct.
Section CaseOption.
(* Switching of option reduces to matching of sums with Empty_set *)
Variable X : Type.
Variable (sigX : finType).
Hypothesis (codX : codable sigX X).
Compute encode (None : option nat).
Compute encode (Some 42).
Let sig := FinType (EqType (sigSum sigX (FinType(EqType Empty_set)))).
Let tau := FinType (EqType (sigOption sigX)).
Definition CaseOption_Rel : Rel (tapes tau^+ 1) (bool * tapes tau^+ 1) :=
Mk_R_p (fun tin '(yout, tout) =>
forall o : option X,
tin ≃ o ->
match yout, o with
| true, Some x => tout ≃ x
| false, None => isRight tout
| _, _ => False
end).
Local Instance Retract_sigOption_sigSum :
Retract (sigSum sigX Empty_set) (sigOption sigX) :=
{|
Retr_f x := match x : (sigSum sigX (FinType (EqType Empty_set))) with
| sigSum_X a => sigOption_X a
| sigSum_Y b => match b with end
| sigSum_inl => sigOption_Some
| sigSum_inr => sigOption_None
end;
Retr_g y := match y with
| sigOption_X a => Some (sigSum_X a)
| sigOption_Some => Some (sigSum_inl)
| sigOption_None => Some (sigSum_inr)
end;
|}.
Proof.
abstract now intros x y; split;
[ now destruct y; intros H; inv H
| intros ->; now destruct x as [ a | [] | | ]
].
Defined.
Definition CaseOption : pTM (sigOption sigX)^+ bool 1 :=
If (ChangeAlphabet (CaseSum (sigX) (FinType (EqType Empty_set))) _)
(Return Nop true)
(Return (ResetEmpty _) false).
Definition opt_to_sum (o : option X) : X + unit :=
match o with
| Some x => inl x
| None => inr tt
end.
Definition CaseOption_steps := 7.
Lemma CaseOption_Sem :
CaseOption ⊨c(CaseOption_steps) CaseOption_Rel.
Proof.
unfold CaseOption_steps. eapply RealiseIn_monotone.
{ unfold CaseOption. TM_Correct. unfold ChangeAlphabet. TM_Correct.
- apply ResetEmpty_Sem with (X := unit).
}
{ cbn. reflexivity. }
{
intros tin (yout&tout) H. intros o HEncO.
unfold tape_contains in HEncO. (* This makes the (otherwise implicit) encoding visible *)
cbn in *.
destruct H; TMSimp; unfold tau in *.
{ (* "Then" case *)
(* This part is the same for both branches *)
simpl_tape in H. cbn in *.
specialize (H (opt_to_sum o)). spec_assert H.
{
simpl_surject.
eapply tape_contains_ext with (1 := HEncO).
destruct o; cbn; f_equal. rewrite !List.map_map. apply map_ext. cbv; auto.
}
destruct o as [ x | ]; cbn in *; auto.
simpl_tape in H; cbn in *; simpl_surject.
(* We know now that o = Some x *)
unfold tape_contains in H. unfold tape_contains.
eapply tape_contains_ext with (1 := H). cbn. rewrite List.map_map. apply map_ext. auto.
}
{ (* "Else" case *)
simpl_tape in H. cbn in *.
specialize (H (opt_to_sum o)). spec_assert H.
{
simpl_surject.
eapply tape_contains_ext with (1 := HEncO).
destruct o; cbn; f_equal. rewrite !List.map_map. apply map_ext. cbv; auto.
}
destruct o as [ x | ]; cbn in *; auto.
simpl_tape in H; cbn in *; simpl_surject.
modpon H1.
(* We know now that o = None *)
eapply H1; eauto.
}
}
Qed.
Definition Constr_Some_Rel : Rel (tapes tau^+ 1) (unit * tapes tau^+ 1) :=
Mk_R_p (ignoreParam(
fun tin tout =>
forall x : X,
tin ≃ x ->
tout ≃ Some x)).
Definition Constr_Some : pTM (sigOption sigX)^+ unit 1 :=
ChangeAlphabet (Constr_inl sigX (FinType (EqType Empty_set))) _.
Definition Constr_Some_steps := 3.
Lemma Constr_Some_Sem : Constr_Some ⊨c(Constr_Some_steps) Constr_Some_Rel.
Proof.
unfold Constr_Some_steps. eapply RealiseIn_monotone.
{ unfold Constr_Some. unfold ChangeAlphabet. TM_Correct. }
{ cbn. reflexivity. }
{
intros tin ((), tout) H.
intros x HEncX. TMSimp.
simpl_tape in H. cbn in H.
unfold tape_contains in *.
specialize (H x). spec_assert H.
{ eapply contains_translate_tau1. unfold tape_contains. eapply tape_contains_ext with (1 := HEncX).
cbn. rewrite !List.map_map. apply map_ext. cbv. auto. }
apply contains_translate_tau2 in H. unfold tape_contains in H.
eapply tape_contains_ext with (1 := H). cbn. now rewrite !List.map_map.
}
Qed.
Definition Constr_None_Rel : Rel (tapes tau^+ 1) (unit * tapes tau^+ 1) :=
Mk_R_p (ignoreParam(
fun tin tout =>
isRight tin ->
tout ≃ None)).
Definition Constr_None : pTM tau^+ unit 1 := WriteValue [ sigOption_None ].
Goal Constr_None = WriteMove (inl STOP) L;; WriteMove (inr sigOption_None) L;; Write (inl START).
Proof. reflexivity. Qed.
Definition Constr_None_steps := 5.
Lemma Constr_None_Sem : Constr_None ⊨c(Constr_None_steps) Constr_None_Rel.
Proof.
eapply RealiseIn_monotone.
{ unfold Constr_None. TM_Correct. }
{ cbn. reflexivity. }
{ intros tin ((), tout) H. cbn in *. auto. }
Qed.
End CaseOption.
Arguments CaseOption : simpl never.
Arguments Constr_None : simpl never.
Arguments Constr_Some : simpl never.
Ltac smpl_TM_CaseOption :=
lazymatch goal with
| [ |- CaseOption _ ⊨ _ ] => eapply RealiseIn_Realise; apply CaseOption_Sem
| [ |- CaseOption _ ⊨c(_) _ ] => apply CaseOption_Sem
| [ |- projT1 (CaseOption _) ↓ _ ] => eapply RealiseIn_TerminatesIn; apply CaseOption_Sem
| [ |- Constr_None _ ⊨ _ ] => eapply RealiseIn_Realise; apply Constr_None_Sem
| [ |- Constr_None _ ⊨c(_) _ ] => apply Constr_None_Sem
| [ |- projT1 (Constr_None _) ↓ _ ] => eapply RealiseIn_TerminatesIn; apply Constr_None_Sem
| [ |- Constr_Some _ ⊨ _ ] => eapply RealiseIn_Realise; apply Constr_Some_Sem
| [ |- Constr_Some _ ⊨c(_) _ ] => apply Constr_Some_Sem
| [ |- projT1 (Constr_Some _) ↓ _ ] => eapply RealiseIn_TerminatesIn; apply Constr_Some_Sem
end.
Smpl Add smpl_TM_CaseOption : TM_Correct.