Lvc.Coherence.DelocationCorrect
Require Import Util CSet CMap MapDefined SetOperations OUnion OptionR.
Require Import IL InRel4 RenamedApart LabelsDefined Restrict.
Require Import Annotation Liveness.Liveness Coherence Delocation.
Require Import Sim SimTactics.
Set Implicit Arguments.
Unset Printing Records.
Unset Printing Abstraction Types.
Inductive approx
: list params → list (set var) → list (option (set var)) → list params → list I.block → list I.block
→ params → set var → option (set var) → params → I.block → I.block → Prop :=
blk_approxI o (Za Z':list var) ZL Lv DL ZAL s ans ans_lv ans_lv' n L1 L2
(RD:∀ G, o = Some G →
live_sound Imperative (@List.app _ ⊜ ZL ZAL) Lv (compile ZAL s ans) ans_lv'
∧ trs (restr G ⊝ DL) ZAL s ans_lv ans)
: length DL = length ZL
→ length ZL = length Lv
→ approx ZL Lv DL ZAL L1 L2 Z' (getAnn ans_lv') o Za (I.blockI Z' s n) (I.blockI (Z'++Za) (compile ZAL s ans) n).
Lemma approx_restrict ZL Lv DL ZAL L L' G
: inRel approx ZL Lv DL ZAL L L'
→ inRel approx ZL Lv (restr G ⊝ DL) ZAL L L'.
Proof.
eapply inRel_map_A3.
intros. inv H. econstructor; eauto with len.
intros. destruct a3; simpl in *; isabsurd.
cases in H2; isabsurd.
exploit RD; eauto; dcr.
split; eauto.
rewrite restrict_idem; eauto.
Qed.
Lemma delocation_sim DL ZL ZAL L L' (E E':onv val) s ans Lv' ans_lv ans_lv'
(RD: trs DL ZAL s ans_lv ans)
(EA: inRel approx ZL Lv' DL ZAL L L')
(EQ: (@feq _ _ eq) E E')
(LV': live_sound Imperative (app (A:=var) ⊜ ZL ZAL) Lv' (compile ZAL s ans) ans_lv')
(EDEF: defined_on (getAnn ans_lv') E')
(LEN1: length DL = length ZL)
(LEN2: length ZL = length Lv')
: sim bot3 Bisim (L, E, s) (L', E', compile ZAL s ans).
Proof.
revert_all. pcofix delocation_sim; intros.
inv RD; invt live_sound; simpl.
- destruct e.
+ remember (op_eval E e). symmetry in Heqo.
pose proof Heqo. rewrite EQ in H0.
destruct o.
× pone_step. simpl in ×.
right; eapply delocation_sim; eauto using approx_restrict with len.
-- rewrite EQ; reflexivity.
-- eapply defined_on_update_some. eapply defined_on_incl; eauto.
× pno_step.
+ remember (omap (op_eval E) Y); intros. symmetry in Heqo.
pose proof Heqo. erewrite omap_agree in H0. Focus 2.
intros. rewrite EQ. reflexivity.
destruct o.
× pextern_step; try congruence.
-- right; eapply delocation_sim; eauto using approx_restrict with len.
hnf; intros. lud; eauto.
eauto using defined_on_update_some, defined_on_incl.
-- right; eapply delocation_sim; eauto using approx_restrict with len.
hnf; intros. lud; eauto.
eauto using defined_on_update_some, defined_on_incl.
× pno_step.
- remember (op_eval E e). symmetry in Heqo.
pose proof Heqo. rewrite EQ in H1.
destruct o.
case_eq (val2bool v); intros.
+ pone_step. right; eapply delocation_sim; eauto using defined_on_incl.
+ pone_step. right; eapply delocation_sim; eauto using defined_on_incl.
+ pno_step.
- pno_step. simpl. rewrite EQ; eauto.
- simpl counted in ×.
erewrite get_nth in *; eauto.
case_eq (omap (op_eval E) Y); intros.
+ inv_get.
assert (❬Y❭ = ❬x❭). {
repeat rewrite app_length in H8.
rewrite map_length in H8. omega.
}
inRel_invs. inv H12; simpl in ×.
edestruct (omap_var_defined_on Za); eauto.
eapply get_in_incl. intros.
exploit H10; eauto using get_app_right. inv H14; eauto.
pone_step. rewrite omap_app.
erewrite omap_agree with (g:=op_eval E). rewrite H1.
simpl. rewrite H9. reflexivity. intros. rewrite EQ; eauto.
simpl. exploit RD0; eauto; dcr.
right; eapply delocation_sim; eauto using approx_restrict with len.
× rewrite EQ. rewrite List.map_app.
rewrite update_with_list_app; eauto with len.
rewrite (omap_self_update _ _ H9); reflexivity.
× eapply defined_on_update_list; eauto with len.
eapply defined_on_incl; eauto.
+ pno_step.
rewrite omap_app in def. monad_inv def.
erewrite omap_agree in H1. erewrite H1 in EQ0. congruence.
intros. rewrite EQ. reflexivity.
- pone_step.
assert (length F = length als).
rewrite <- H7. eauto with len.
rewrite fst_compileF_eq in H6; eauto with len.
rewrite <- zip_app in H6; eauto with len.
right; eapply delocation_sim; eauto 20 with len.
+ repeat rewrite zip_app; eauto 30 with len.
econstructor; eauto.
eapply mutual_approx; eauto 20 using mkBlock_I_i with len.
× intros; inv_get.
exploit H8; eauto.
unfold I.mkBlock. unfold compileF in H15. inv_get. simpl in ×.
eapply blk_approxI; eauto 20 with len.
intros. invc H10. split; eauto.
rewrite fst_compileF_eq in H5; eauto with len.
rewrite <- zip_app in H5; eauto with len.
+ simpl in ×. eapply defined_on_incl; eauto.
Qed.
Lemma correct E s ans ans_lv ans_lv'
(RD: trs nil nil s ans_lv ans)
(LV': live_sound Imperative nil nil (compile nil s ans) ans_lv')
(EDEF: defined_on (getAnn ans_lv') E)
: sim bot3 Bisim (nil, E, s) (nil, E, compile nil s ans).
Proof.
eapply (@delocation_sim nil nil nil nil nil); eauto using @inRel; reflexivity.
Qed.
Require Import IL InRel4 RenamedApart LabelsDefined Restrict.
Require Import Annotation Liveness.Liveness Coherence Delocation.
Require Import Sim SimTactics.
Set Implicit Arguments.
Unset Printing Records.
Unset Printing Abstraction Types.
Inductive approx
: list params → list (set var) → list (option (set var)) → list params → list I.block → list I.block
→ params → set var → option (set var) → params → I.block → I.block → Prop :=
blk_approxI o (Za Z':list var) ZL Lv DL ZAL s ans ans_lv ans_lv' n L1 L2
(RD:∀ G, o = Some G →
live_sound Imperative (@List.app _ ⊜ ZL ZAL) Lv (compile ZAL s ans) ans_lv'
∧ trs (restr G ⊝ DL) ZAL s ans_lv ans)
: length DL = length ZL
→ length ZL = length Lv
→ approx ZL Lv DL ZAL L1 L2 Z' (getAnn ans_lv') o Za (I.blockI Z' s n) (I.blockI (Z'++Za) (compile ZAL s ans) n).
Lemma approx_restrict ZL Lv DL ZAL L L' G
: inRel approx ZL Lv DL ZAL L L'
→ inRel approx ZL Lv (restr G ⊝ DL) ZAL L L'.
Proof.
eapply inRel_map_A3.
intros. inv H. econstructor; eauto with len.
intros. destruct a3; simpl in *; isabsurd.
cases in H2; isabsurd.
exploit RD; eauto; dcr.
split; eauto.
rewrite restrict_idem; eauto.
Qed.
Lemma delocation_sim DL ZL ZAL L L' (E E':onv val) s ans Lv' ans_lv ans_lv'
(RD: trs DL ZAL s ans_lv ans)
(EA: inRel approx ZL Lv' DL ZAL L L')
(EQ: (@feq _ _ eq) E E')
(LV': live_sound Imperative (app (A:=var) ⊜ ZL ZAL) Lv' (compile ZAL s ans) ans_lv')
(EDEF: defined_on (getAnn ans_lv') E')
(LEN1: length DL = length ZL)
(LEN2: length ZL = length Lv')
: sim bot3 Bisim (L, E, s) (L', E', compile ZAL s ans).
Proof.
revert_all. pcofix delocation_sim; intros.
inv RD; invt live_sound; simpl.
- destruct e.
+ remember (op_eval E e). symmetry in Heqo.
pose proof Heqo. rewrite EQ in H0.
destruct o.
× pone_step. simpl in ×.
right; eapply delocation_sim; eauto using approx_restrict with len.
-- rewrite EQ; reflexivity.
-- eapply defined_on_update_some. eapply defined_on_incl; eauto.
× pno_step.
+ remember (omap (op_eval E) Y); intros. symmetry in Heqo.
pose proof Heqo. erewrite omap_agree in H0. Focus 2.
intros. rewrite EQ. reflexivity.
destruct o.
× pextern_step; try congruence.
-- right; eapply delocation_sim; eauto using approx_restrict with len.
hnf; intros. lud; eauto.
eauto using defined_on_update_some, defined_on_incl.
-- right; eapply delocation_sim; eauto using approx_restrict with len.
hnf; intros. lud; eauto.
eauto using defined_on_update_some, defined_on_incl.
× pno_step.
- remember (op_eval E e). symmetry in Heqo.
pose proof Heqo. rewrite EQ in H1.
destruct o.
case_eq (val2bool v); intros.
+ pone_step. right; eapply delocation_sim; eauto using defined_on_incl.
+ pone_step. right; eapply delocation_sim; eauto using defined_on_incl.
+ pno_step.
- pno_step. simpl. rewrite EQ; eauto.
- simpl counted in ×.
erewrite get_nth in *; eauto.
case_eq (omap (op_eval E) Y); intros.
+ inv_get.
assert (❬Y❭ = ❬x❭). {
repeat rewrite app_length in H8.
rewrite map_length in H8. omega.
}
inRel_invs. inv H12; simpl in ×.
edestruct (omap_var_defined_on Za); eauto.
eapply get_in_incl. intros.
exploit H10; eauto using get_app_right. inv H14; eauto.
pone_step. rewrite omap_app.
erewrite omap_agree with (g:=op_eval E). rewrite H1.
simpl. rewrite H9. reflexivity. intros. rewrite EQ; eauto.
simpl. exploit RD0; eauto; dcr.
right; eapply delocation_sim; eauto using approx_restrict with len.
× rewrite EQ. rewrite List.map_app.
rewrite update_with_list_app; eauto with len.
rewrite (omap_self_update _ _ H9); reflexivity.
× eapply defined_on_update_list; eauto with len.
eapply defined_on_incl; eauto.
+ pno_step.
rewrite omap_app in def. monad_inv def.
erewrite omap_agree in H1. erewrite H1 in EQ0. congruence.
intros. rewrite EQ. reflexivity.
- pone_step.
assert (length F = length als).
rewrite <- H7. eauto with len.
rewrite fst_compileF_eq in H6; eauto with len.
rewrite <- zip_app in H6; eauto with len.
right; eapply delocation_sim; eauto 20 with len.
+ repeat rewrite zip_app; eauto 30 with len.
econstructor; eauto.
eapply mutual_approx; eauto 20 using mkBlock_I_i with len.
× intros; inv_get.
exploit H8; eauto.
unfold I.mkBlock. unfold compileF in H15. inv_get. simpl in ×.
eapply blk_approxI; eauto 20 with len.
intros. invc H10. split; eauto.
rewrite fst_compileF_eq in H5; eauto with len.
rewrite <- zip_app in H5; eauto with len.
+ simpl in ×. eapply defined_on_incl; eauto.
Qed.
Lemma correct E s ans ans_lv ans_lv'
(RD: trs nil nil s ans_lv ans)
(LV': live_sound Imperative nil nil (compile nil s ans) ans_lv')
(EDEF: defined_on (getAnn ans_lv') E)
: sim bot3 Bisim (nil, E, s) (nil, E, compile nil s ans).
Proof.
eapply (@delocation_sim nil nil nil nil nil); eauto using @inRel; reflexivity.
Qed.