Lvc.Equiv.CtxEq
Require Import Util MapDefined LengthEq Map CSet AutoIndTac AllInRel.
Require Import Var Val Exp Env IL SimF.
Set Implicit Arguments.
Unset Printing Records.
Require Import Var Val Exp Env IL SimF.
Set Implicit Arguments.
Unset Printing Records.
Instance SR : PointwiseProofRelationF (params) := {
ParamRelFP G Z Z' := Z = Z' ∧ Z = G;
ArgRelFP E E' G VL VL' := VL = VL' ∧ length VL = length G;
}.
Definition bisimeq r t s s' :=
∀ L L' E, labenv_sim t (sim r) SR (F.block_Z ⊝ L') L L'
→ ❬L❭ = ❬L'❭
→ sim r t (L:F.labenv, E, s) (L', E, s').
Lemma bisimeq_refl s t
: ∀ L L' E r,
labenv_sim t (sim r) SR (block_Z ⊝ L') L L'
→ sim r t (L, E, s) (L', E, s).
Proof.
sind s; destruct s; simpl in *; intros.
- destruct e.
+ eapply (sim_let_op il_statetype_F); eauto.
+ eapply (sim_let_call il_statetype_F); eauto.
- eapply (sim_cond il_statetype_F); eauto.
- edestruct (get_dec L' (counted l)) as [[b]|]; [ inv_get | ].
+ eapply labenv_sim_app; eauto.
simpl.
intros; split; intros; dcr; inv_get; simpl in *; subst; try cases; eauto.
+ pno_step. edestruct H; eauto. rewrite map_length in H0. inv_get.
- pno_step.
- pone_step. left.
eapply (IH s); eauto with len.
rewrite map_app. intros.
eapply labenv_sim_extension_ptw; eauto with len.
+ intros; hnf; intros; inv_get; eauto.
simpl in *; dcr; subst. get_functional.
eapply IH; eauto with len. rewrite map_app; eauto.
+ hnf; intros; simpl in *; subst; inv_get; simpl; eauto.
Qed.
Lemma labenv_sim_refl t r L
: smaller L
→ labenv_sim t (sim r) SR (List.map F.block_Z L) L L.
Proof.
intros. hnf; dcr; do 4 try split; eauto with len.
- intros [] []; intros; simpl in *; subst; inv_get; split; eauto.
- split. hnf; intros; simpl in *; inv_get; eauto.
hnf; intros; simpl in ×. destruct f, f'; simpl in *; subst.
get_functional; dcr; subst; inv_get.
pone_step; simpl; eauto with len. left.
eapply sim_refl.
Qed.
Lemma labenv_sim_sym L L'
: labenv_sim Bisim (sim bot3) SR (List.map F.block_Z L') L L'
→ labenv_sim Bisim (sim bot3) SR (List.map F.block_Z L) L' L.
Proof.
intros []; intros; dcr; do 4 (try split; eauto with len).
- hnf; intros. destruct f,f'; simpl in *; subst.
exploit (H2 (LabI n0) (LabI n0)); eauto. simpl in ×. dcr; subst; eauto.
inv_get. eauto.
- split.
+ hnf; intros; simpl in *; inv_get; eauto.
+ hnf; intros.
eapply bisim_sym. simpl in *; dcr; subst.
destruct f, f'; simpl in *; subst.
eapply H6; eauto. simpl. eauto with len.
Qed.
Lemma bisimeq_sym s1 s2
: bisimeq bot3 Bisim s1 s2
→ bisimeq bot3 Bisim s2 s1.
Proof.
intros. hnf; intros.
eapply bisim_sym. eapply H; eauto.
eapply labenv_sim_sym; eauto.
Qed.
Lemma bisimeq_trans t s1 s2 s3
: bisimeq bot3 t s1 s2
→ bisimeq bot3 t s2 s3
→ bisimeq bot3 t s1 s3.
Proof.
intros. hnf; intros.
eapply sim_trans with (S2:=F.state). eauto.
eapply H0; eauto.
intros. eapply labenv_sim_refl; eauto.
eapply H1; eauto.
Qed.
Lemma labenv_sim_trans t (L1 L2 L3:F.labenv)
: labenv_sim t (sim bot3) SR (List.map F.block_Z L2) L1 L2
→ labenv_sim t (sim bot3) SR (List.map F.block_Z L3) L2 L3
→ labenv_sim t (sim bot3) SR (List.map F.block_Z L3) L1 L3.
Proof.
intros.
assert (❬L1❭ = ❬L2❭). {
destruct H; dcr. rewrite <- H. eauto with len.
}
assert (❬L2❭ = ❬L3❭). {
destruct H0; dcr. rewrite <- H0. eauto with len.
}
hnf; dcr; do 4 try split; eauto with len.
- destruct H, H0; dcr; eauto.
- eapply H.
- hnf; intros; simpl in *; destruct f,f'; simpl in *; subst; inv_get.
simpl. destruct x.
destruct H as [_ [_ [_ [PA1 _]]]]. destruct H0 as [_ [_ [_ [PA2 _]]]].
exploit (PA1 (LabI n0) (LabI n0)); eauto; simpl in *; dcr; subst.
exploit (PA2 (LabI n0) (LabI n0)); eauto; simpl in *; dcr; subst.
- split.
+ hnf; intros; simpl in *; inv_get; eauto.
+ hnf; intros; simpl in ×. destruct f, f'; simpl in *; subst.
inv_get; dcr; subst; simpl in ×.
eapply sim_trans with (S2:=F.state).
eapply labenv_sim_app; eauto.
Focus 2.
eapply labenv_sim_app; eauto.
intros; simpl in *; dcr; repeat subst; repeat get_functional.
split; intros; eauto. cases; eauto.
intros; simpl in *; dcr. destruct x; simpl in ×.
repeat subst; repeat get_functional.
split; intros; eauto. eexists; split; eauto. split; eauto with len.
split; eauto with len. congruence.
cases; eauto. split; intros. congruence.
eauto with len.
Qed.
Inductive stmtCtx : Type :=
| ctxExp (x : var) (e: exp) (C : stmtCtx) : stmtCtx
| ctxIfS (e : op) (C : stmtCtx) (t : stmt) : stmtCtx
| ctxIfT (e : op) (s : stmt) (C : stmtCtx) : stmtCtx
| ctxLetS (F1: list (params×stmt)) (Z:params) (C : stmtCtx) (F2: list (params×stmt)) (t : stmt) : stmtCtx
| ctxLetT (F: list (params×stmt)) (C : stmtCtx) : stmtCtx
| ctxHole.
Fixpoint fill (ctx:stmtCtx) (s':stmt) : stmt :=
match ctx with
| ctxExp x e ctx ⇒ stmtLet x e (fill ctx s')
| ctxIfS e ctx t ⇒ stmtIf e (fill ctx s') t
| ctxIfT e s ctx ⇒ stmtIf e s (fill ctx s')
| ctxLetS F1 Z ctx F2 t ⇒ stmtFun (F1 ++ (Z,fill ctx s')::F2) t
| ctxLetT F ctx ⇒ stmtFun F (fill ctx s')
| ctxHole ⇒ s'
end.
Fixpoint fillC (ctx:stmtCtx) (s':stmtCtx) : stmtCtx :=
match ctx with
| ctxExp x e ctx ⇒ ctxExp x e (fillC ctx s')
| ctxIfS e ctx t ⇒ ctxIfS e (fillC ctx s') t
| ctxIfT e s ctx ⇒ ctxIfT e s (fillC ctx s')
| ctxLetS F1 Z ctx F2 t ⇒ ctxLetS F1 Z (fillC ctx s') F2 t
| ctxLetT F ctx ⇒ ctxLetT F (fillC ctx s')
| ctxHole ⇒ s'
end.
Lemma simeq_contextual p r s s' ctx
: (∀ r, bisimeq r p s s')
→ bisimeq r p (fill ctx s) (fill ctx s').
Proof.
intros. general induction ctx; simpl; hnf; intros; eauto.
- destruct e.
+ eapply (sim_let_op il_statetype_F); eauto.
intros. left. eapply IHctx; eauto.
+ eapply (sim_let_call il_statetype_F); eauto.
intros. left. eapply IHctx; eauto.
- eapply (sim_cond il_statetype_F); eauto; intros; left.
+ eapply IHctx; eauto.
+ eapply bisimeq_refl; eauto.
- eapply (sim_cond il_statetype_F); eauto; intros; left.
+ eapply bisimeq_refl; eauto.
+ eapply IHctx; eauto.
- pone_step. left.
eapply bisimeq_refl; eauto 20 with len.
rewrite map_app. intros.
eapply labenv_sim_extension_ptw; simpl; eauto 20 with len.
+ intros; hnf; intros.
{ destruct (get_subst _ _ _ H5) as [? |[?|?]].
- inv_get; simpl in *; dcr; subst.
simpl; repeat split; eauto. inv_get.
eapply bisimeq_refl; eauto 20 with len.
rewrite map_app. eauto.
- simpl in ×. dcr; subst. subst. invc H9.
inv_get. simpl in ×.
eapply IHctx; eauto 20 with len.
rewrite map_app. intros; eauto.
- simpl in *; dcr; subst.
inv_get. simpl in ×.
eapply bisimeq_refl; eauto 20 with len.
rewrite map_app; eauto.
}
+ hnf; intros; simpl in *; subst; inv_get; simpl.
destruct (get_subst _ _ _ H4) as [? |[?|?]].
× inv_get; simpl in *; dcr; subst; eauto.
× dcr; subst. invc H5. inv_get; eauto with len.
× simpl in *; dcr; subst. inv_get; eauto.
- pone_step. left.
eapply IHctx; eauto with len.
rewrite map_app. intros.
eapply labenv_sim_extension_ptw; simpl; eauto 20 with len.
+ intros; hnf; simpl; intros; dcr; subst; inv_get. simpl in ×.
eapply bisimeq_refl; eauto 20 with len.
rewrite map_app; eauto.
+ hnf; simpl; intros; subst; inv_get; simpl; eauto.
- eapply H; eauto.
Qed.
Lemma fun_congrunence p F F' t t' (LEN:length F = length F')
: (∀ r, bisimeq r p t t')
→ (∀ n Z s Z' s', get F n (Z, s) → get F' n (Z', s') → Z = Z' ∧ ∀ r, bisimeq r p s s')
→ ∀ r, bisimeq r p (stmtFun F t) (stmtFun F' t').
Proof.
intros.
hnf; intros.
eapply sim_fun_ptw; eauto using labenv_sim_refl.
+ intros. left. eapply H; eauto with len.
intros. rewrite map_app. eauto.
+ intros. hnf; intros. inv_get. simpl in *; subst; dcr; subst.
exploit H0; eauto; dcr; subst.
eapply H11; eauto with len. rewrite map_app; eauto with len.
+ hnf; intros. simpl in *; subst. exploit H0; eauto; dcr; subst.
inv_get; eauto.
+ eauto with len.
Qed.
Lemma fill_fillC C C' s
: fill (fillC C C') s = fill C (fill C' s).
Proof.
general induction C; simpl; f_equal; eauto.
rewrite IHC; eauto.
Qed.
Definition lessDef (E E':onv val)
:= ∀ x , E' x = None → E x = None.
Lemma ctx_constr_E (E':onv val) G G'
: ∃ C, ∀ E, lessDef E E' →
∃ EC, ∀ (L:list F.block) s,
star2 step (L, E, fill C s) nil (L, EC, s)
∧ agree_on eq G E' EC
∧ agree_on eq (G'\G) EC E.
Proof.
revert G'.
pattern G. eapply set_induction.
- intros. eexists ctxHole. intros. eexists E. split.
+ eapply star2_refl.
+ eapply empty_is_empty_1 in H. rewrite H.
split.
× hnf; intros; cset_tac; intuition.
× eapply agree_on_refl; eauto.
- intros. eapply Add_Equal in H1.
case_eq (E' x); intros.
+ edestruct H as [C' ?]; eauto using defined_on_incl with cset.
eexists (fillC C' (ctxExp x (Operation (Con v)) ctxHole)).
intros. specialize (H3 E). destruct H3 as[EC' ?]; eauto.
eexists (EC'[x<-E' x]). intros. rewrite fill_fillC.
split.
× simpl. eapply (@star2_trans _ _ _ _ _ nil nil).
eapply H3. rewrite H2. eapply star2_silent. single_step; simpl; eauto.
eapply star2_refl.
× split.
-- hnf; intros. lud; eauto.
eapply H3; eauto. rewrite H1 in H5. cset_tac.
-- eapply agree_on_update_dead. rewrite H1. cset_tac; intuition.
eapply agree_on_incl; eauto. eapply H3; eauto.
rewrite H1. cset_tac.
+ edestruct (H ({x; G'})) as [C' ?]; eauto using defined_on_incl with cset.
eexists C'.
intros. specialize (H3 E H4).
destruct H3 as[EC' ?]; eauto.
eexists (EC').
intros. edestruct H3; dcr; split; eauto.
split.
× rewrite H1.
hnf; intros.
cset_tac'. rewrite H2, H8. rewrite H4; eauto.
cset_tac.
× eapply agree_on_incl; eauto. rewrite H1. clear. cset_tac.
Qed.