Library ProgrammingTuringMachines.TM.Code.ListTM
Require Import ProgrammingTools.
Require Import CaseNat CaseList CaseSum. (* TM.Code.CaseSum contains Constr_Some and Constr_None. *)
Local Arguments skipn { A } !n !l.
Local Arguments plus : simpl never.
Local Arguments mult : simpl never.
Local Arguments Encode_list : simpl never.
Local Arguments Encode_nat : simpl never.
Section Nth.
Variable (sig sigX : finType) (X : Type) (cX : codable sigX X).
Variable (retr1 : Retract (sigList sigX) sig) (retr2 : Retract sigNat sig) (retr3 : Retract (sigOption sigX ) sig).
Local Instance retr_X_list : Retract sigX sig := ComposeRetract retr1 (Retract_sigList_X _).
Local Instance retr_X_opt : Retract sigX sig := ComposeRetract retr3 (Retract_sigOption_X _).
(*
Check _ : codable sig (list X).
Check _ : codable sig nat.
Check _ : codable sig (option X).
*)
(*
* Nth_Step:
* if ∃n'. n = S n'; n' -> n {
* if ∃x l'. l == x::l'; l' -> l {
* reset x
* continue
* } else {
* x = None
* return
* }
* } else {
* if ∃x l'. l == x::l'; l' -> l {
* x = Some x
* return
* } else {
* x = None
* return
* }
* }
*
* t0: l (copy)
* t1: n (copy)
* t2: x (output)
*)
Definition Nth_Step_Rel : Rel (tapes sig^+ 3) (option unit * tapes sig^+ 3) :=
fun tin '(yout, tout) =>
forall (l : list X) (n : nat),
tin[@Fin0] ≃ l ->
tin[@Fin1] ≃ n ->
isRight tin[@Fin2] ->
match yout, n, l with
| None, S n', x :: l' => (* Recursion case *)
tout[@Fin0] ≃ l' /\
tout[@Fin1] ≃ n' /\
isRight tout[@Fin2] (* continue *)
| Some tt, S n', nil => (* list to short *)
tout[@Fin0] ≃ l /\
tout[@Fin1] ≃ n' /\
tout[@Fin2] ≃ None (* return None *)
| Some tt, 0, x::l' => (* return value *)
tout[@Fin0] ≃ l' /\
tout[@Fin1] ≃ 0 /\
tout[@Fin2] ≃ Some x (* return Some x *)
| Some tt, 0, nil => (* list to short *)
tout[@Fin0] ≃ l /\
tout[@Fin1] ≃ n /\
tout[@Fin2] ≃ None (* return None *)
| _, _, _ => False
end.
Definition Nth_Step : pTM sig^+ (option unit) 3 :=
If (LiftTapes (ChangeAlphabet CaseNat _) [|Fin1|])
(If (LiftTapes (ChangeAlphabet (CaseList sigX) _) [|Fin0; Fin2|])
(Return (LiftTapes (Reset _) [|Fin2|]) (None))
(Return (LiftTapes (ChangeAlphabet (Constr_None _) _) [|Fin2|]) (Some tt)))
(If (LiftTapes (ChangeAlphabet (CaseList sigX) _) [|Fin0; Fin2|])
(Return (LiftTapes (Translate retr_X_list retr_X_opt;;
ChangeAlphabet (Constr_Some sigX) _) [|Fin2|]) (Some tt))
(Return (LiftTapes (ChangeAlphabet (Constr_None _) _) [|Fin2|]) (Some tt)))
.
Lemma Nth_Step_Realise : Nth_Step ⊨ Nth_Step_Rel.
Proof.
eapply Realise_monotone.
{ unfold Nth_Step. TM_Correct.
- eapply Reset_Realise with (cX := Encode_map cX retr_X_list).
- apply Translate_Realise with (X := X).
}
{
intros tin (yout, tout) H.
intros l n HEncL HEncN HRight.
destruct H; TMSimp.
{ (* First "Then" case *)
modpon H.
destruct n as [ | n']; auto; simpl_surject.
(* We know that n = S n' *)
destruct H0; TMSimp.
{ (* Second "Then" case *)
modpon H0. destruct l as [ | x l']; auto; simpl_surject. modpon H0.
modpon H1.
(* We know that l = x :: l' *)
modpon H2. repeat split; auto.
}
{ (* Second "Else" case *)
modpon H0. destruct l as [ | x l']; auto; modpon H0; auto; simpl_surject.
(* We know that l = nil *)
modpon H1.
modpon H2. repeat split; eauto.
}
}
{ (* The first "Else" case *)
modpon H.
destruct n as [ | n']; auto.
(* We know that n = 0 *)
destruct H0; TMSimp.
{ (* Second "Then" case *)
modpon H0.
destruct l as [ | x l']; auto. destruct H0 as (H0&H0'); simpl_surject.
(* We know that l = x :: l' *)
modpon H1.
simpl_tape in H2. modpon H2. repeat split; auto.
}
{ (* Second "Else" case *)
modpon H0.
destruct l as [ | x l']; auto; destruct H0 as (H0 & H0'); simpl_surject.
(* We know that l = nil *)
modpon H1. repeat split; eauto.
}
}
}
Qed.
Definition Nth_Loop_Rel : Rel (tapes sig^+ 3) (unit * tapes sig^+ 3) :=
ignoreParam
(fun tin tout =>
forall l (n : nat),
tin[@Fin0] ≃ l ->
tin[@Fin1] ≃ n ->
isRight tin[@Fin2] ->
tout[@Fin0] ≃ skipn (S n) l /\
tout[@Fin1] ≃ n - (S (length l)) /\
tout[@Fin2] ≃ nth_error l n).
Definition Nth_Loop := While Nth_Step.
Lemma Nth_Loop_Realise : Nth_Loop ⊨ Nth_Loop_Rel.
Proof.
eapply Realise_monotone.
{ unfold Nth_Loop. TM_Correct. eapply Nth_Step_Realise. }
{
apply WhileInduction; intros; intros l n HEncL HEncN HRight.
- TMSimp. modpon HLastStep.
destruct n as [ | n'], l as [ | x l']; auto; destruct HLastStep as (H1&H2&H3); cbn; repeat split; eauto.
now rewrite Nat.sub_0_r.
- TMSimp. modpon HStar.
destruct n as [ | n'], l as [ | x l']; auto; destruct HStar as (H1&H2&H3); cbn in *.
modpon HLastStep. auto.
}
Qed.
Definition Nth : pTM sig^+ unit 5 :=
LiftTapes (CopyValue _) [|Fin0; Fin3|];; (* Save l (on t0) to t3 and n (on t1) to t4 *)
LiftTapes (CopyValue _) [|Fin1; Fin4|];;
LiftTapes (Nth_Loop) [|Fin3; Fin4; Fin2|];; (* Execute the loop with the copy of n and l *)
LiftTapes (Reset _) [|Fin3|];; (* Reset the copies *)
LiftTapes (Reset _) [|Fin4|]
.
Lemma Nth_Computes : Nth ⊨ Computes2_Rel (@nth_error _).
Proof.
eapply Realise_monotone.
{ unfold Nth. TM_Correct.
- apply CopyValue_Realise with (X := list X).
- apply CopyValue_Realise with (X := nat).
- apply Nth_Loop_Realise.
- apply Reset_Realise with (X := list X).
- apply Reset_Realise with (X := nat).
}
{
intros tin ((), tout) H. cbn. intros l n HEncL HEncN HOut HInt.
specialize (HInt Fin0) as HInt1. specialize (HInt Fin1) as HInt2. clear HInt.
TMSimp.
modpon H. modpon H0. modpon H1. modpon H2. modpon H3.
repeat split; eauto.
- intros i. destruct_fin i; TMSimp_goal; auto.
}
Qed.
End Nth.
In this implementation of nth_error, instead of encoding an option to the output tape, we use the finite parameter to indicate whether the result is Some or None. The advantage is that the client doesn't have to add the option to its alphabet.
Variable (sig sigX : finType) (X : Type) (cX : codable sigX X).
(* Hypothesis (defX: inhabitedC sigX). *)
Variable (retr1 : Retract (sigList sigX) sig) (retr2 : Retract sigNat sig).
Local Instance retr_X_list' : Retract sigX sig := ComposeRetract retr1 (Retract_sigList_X _).
Check _ : codable sig (list X).
Check _ : codable sig nat.
Definition Nth'_Step_Rel : Rel (tapes sig^+ 3) (option bool * tapes sig^+ 3) :=
fun tin '(yout, tout) =>
forall (l : list X) (n : nat),
tin[@Fin0] ≃ l ->
tin[@Fin1] ≃ n ->
isRight tin[@Fin2] ->
match yout, n, l with
| None, S n', x :: l' => (* Recursion case *)
tout[@Fin0] ≃ l' /\
tout[@Fin1] ≃ n' /\
isRight tout[@Fin2] (* continue *)
| Some true, 0, x::l' => (* return value *)
tout[@Fin0] ≃ l' /\
tout[@Fin1] ≃ 0 /\
tout[@Fin2] ≃ x
| Some false, 0, nil => (* list to short *)
tout[@Fin0] ≃ nil /\
tout[@Fin1] ≃ 0 /\
isRight tout[@Fin2]
| Some false, S n', nil => (* list to short *)
tout[@Fin0] ≃ nil /\
tout[@Fin1] ≃ n' /\
isRight tout[@Fin2]
| _, _, _ => False
end.
Definition Nth'_Step : pTM sig^+ (option bool) 3 :=
If (LiftTapes (ChangeAlphabet CaseNat _) [|Fin1|])
(If (LiftTapes (ChangeAlphabet (CaseList sigX) _) [|Fin0; Fin2|]) (* n = S n' *)
(Return (LiftTapes (Reset _) [|Fin2|]) None) (* l = x :: l'; continue *)
(Return Nop (Some false))) (* l = nil; return false *)
(Relabel (LiftTapes (ChangeAlphabet (CaseList sigX) _) [|Fin0; Fin2|]) Some) (* n = 0 *)
.
Lemma Nth'_Step_Realise : Nth'_Step ⊨ Nth'_Step_Rel.
Proof.
eapply Realise_monotone.
{ unfold Nth'_Step. TM_Correct.
- eapply Reset_Realise with (X := X).
}
{
intros tin (yout, tout) H.
intros l n HEncL HEncN HRight.
destruct H; TMSimp.
{ (* First "Then"; n = S n' *) rename H into HCaseNat, H0 into HIf.
modpon HCaseNat. destruct n as [ | n']; auto; simpl_surject.
destruct HIf; TMSimp.
{ (* Second "Then"; l = x :: l' *) rename H into HCaseList, H0 into HReset.
modpon HCaseList. destruct l as [ | x l']; auto. modpon HCaseList.
modpon HReset. repeat split; auto.
}
{ (* Second "Else"; l = nil *) rename H into HCaseList.
modpon HCaseList. destruct l as [ | x l']; auto. modpon HCaseList. repeat split; auto.
}
}
{ (* The first "Else"; n = 0 *) rename H into HCaseNat, H0 into HCaseList.
modpon HCaseNat. destruct n as [ | n']; auto; simpl_surject.
modpon HCaseList. destruct ymid, l; auto; modpon HCaseList; repeat split; auto. contains_ext.
}
}
Qed.
Definition Nth'_Step_steps (l : list X) (n : nat) :=
match n, l with
| S n', x :: l' =>
2 + CaseNat_steps + CaseList_steps_cons _ x + Reset_steps _ x
| S n', nil =>
2 + CaseNat_steps + CaseList_steps_nil
| O, x :: l' =>
1 + CaseNat_steps + CaseList_steps_cons _ x
| O, nil =>
1 + CaseNat_steps + CaseList_steps_nil
end.
Definition Nth'_Step_T : tRel sig^+ 3 :=
fun tin k => exists (l : list X) (n : nat),
tin[@Fin0] ≃ l /\ tin[@Fin1] ≃ n /\ isRight tin[@Fin2] /\
Nth'_Step_steps l n <= k.
Lemma Nth'_Step_Terminates : projT1 Nth'_Step ↓ Nth'_Step_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Nth'_Step. TM_Correct.
- apply Reset_Terminates with (X := X).
}
{
intros tin k. intros (l&n&HEncL&HEncN&HRight2&Hk). unfold Nth'_Step_steps in Hk.
destruct n as [ | n'] eqn:E1, l as [ | x l'] eqn:E2; cbn.
- (* n = 0 and l = nil *)
exists (CaseNat_steps), (CaseList_steps_nil). repeat split; auto; try omega.
intros tmid b (HCaseNat&HCaseNatInj); TMSimp. modpon HCaseNat. destruct b; auto; simpl_surject.
{ eexists; repeat split; simpl_surject; eauto. }
- (* n = 0 and l = x :: l' *)
exists CaseNat_steps, (CaseList_steps_cons _ x). repeat split; cbn; auto.
intros tmid b (H&HInj1); TMSimp. modpon H. destruct b; cbn in *; auto; simpl_surject.
{ eexists; repeat split; simpl_surject; eauto. }
- (* n = S n' and l = nil *)
exists (CaseNat_steps), (S (CaseList_steps_nil)). repeat split; try omega.
intros tmid b (HCaseNat&HCaseNatInj); TMSimp. modpon HCaseNat. destruct b; auto. simpl_surject.
exists (CaseList_steps_nil), 0. repeat split; try omega.
{ eexists; repeat split; simpl_surject; eauto. }
intros tmid0 b (HCaseList&HCaseListInj); TMSimp. modpon HCaseList. destruct b; auto.
- (* n = S n' and l = x :: l' *)
exists CaseNat_steps, (S (CaseList_steps_cons _ x + Reset_steps _ x)). repeat split; cbn; auto.
intros tmid b (H&HInj1); TMSimp. modpon H. destruct b; cbn in *; auto; simpl_surject.
exists (CaseList_steps_cons _ x), (Reset_steps _ x). repeat split; cbn; try omega.
{ exists (x :: l'). repeat split; simpl_surject; auto. }
intros tmid2 b (H2&HInj2); TMSimp. modpon H2. destruct b; cbn in *; auto; simpl_surject; modpon H2.
exists x. repeat split; eauto. contains_ext. unfold Reset_steps. now rewrite Encode_map_hasSize.
}
Qed.
Definition Nth'_Loop_Rel : Rel (tapes sig^+ 3) (bool * tapes sig^+ 3) :=
fun tin '(yout, tout) =>
forall (l:list X) (n : nat),
tin[@Fin0] ≃ l ->
tin[@Fin1] ≃ n ->
isRight tin[@Fin2] ->
match yout with
| true =>
exists (x : X),
nth_error l n = Some x /\
tout[@Fin0] ≃ skipn (S n) l /\
tout[@Fin1] ≃ n - (S (length l)) /\
tout[@Fin2] ≃ x
| false =>
nth_error l n = None /\
tout[@Fin0] ≃ skipn (S n) l /\
tout[@Fin1] ≃ n - (S (length l)) /\
isRight tout[@Fin2]
end.
Definition Nth'_Loop := While Nth'_Step.
Lemma Nth'_Loop_Realise : Nth'_Loop ⊨ Nth'_Loop_Rel.
Proof.
eapply Realise_monotone.
{ unfold Nth'_Loop. TM_Correct. eapply Nth'_Step_Realise. }
{
apply WhileInduction; intros; intros l n HEncL HEncN HRight; cbn in *.
- modpon HLastStep. destruct yout.
+ destruct n; auto. destruct l as [ | x l']; auto. modpon HLastStep.
cbn. exists x. tauto.
+ destruct n; auto.
* destruct l as [ | x l']; auto.
* destruct l as [ | x l']; auto. modpon HLastStep.
cbn. now rewrite Nat.sub_0_r.
- modpon HStar. destruct n as [ | n']; auto. destruct l as [ | x l']; auto. modpon HStar.
modpon HLastStep. destruct yout.
+ destruct HLastStep as (y&HLastStep); modpon HLastStep. cbn. exists y. eauto.
+ modpon HLastStep. cbn. eauto.
}
Qed.
Fixpoint Nth'_Loop_steps (l : list X) (n : nat) { struct l } :=
match n, l with
| S n', x :: l' => S (Nth'_Step_steps l n) + Nth'_Loop_steps l' n' (* continue *)
| S n', nil => Nth'_Step_steps l n (* return *)
| O, x :: l' => Nth'_Step_steps l n (* return *)
| O, nil => Nth'_Step_steps l n (* only CaseNat and If *)
end.
Definition Nth'_Loop_T : tRel sig^+ 3 :=
fun tin k => exists (l : list X) (n : nat),
tin[@Fin0] ≃ l /\
tin[@Fin1] ≃ n /\
isRight tin[@Fin2] /\
Nth'_Loop_steps l n <= k.
Lemma Nth'_Loop_Terminates : projT1 Nth'_Loop ↓ Nth'_Loop_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Nth'_Loop. TM_Correct.
- apply Nth'_Step_Realise.
- apply Nth'_Step_Terminates. }
{
apply WhileCoInduction. intros tin k (l&n&HEncL&HEncN&HRight&Hk).
destruct l as [ | x l'] eqn:E1, n as [ | n'] eqn:E2; cbn in *; auto; TMSimp.
- (* n=0 and l=0; return *)
exists (Nth'_Step_steps nil 0). split.
{ hnf; cbn. exists nil, 0. repeat split; auto. }
intros b ymid H. modpon H. destruct b; auto.
- (* n=S n' and l=nil; return *)
exists (Nth'_Step_steps nil (S n')). split.
{ hnf; cbn. exists nil, (S n'). repeat split; auto. }
intros b ymid H. modpon H. destruct b as [ [ | ] | ]; auto.
- (* n=0 and l = x :: l'; return *)
exists (Nth'_Step_steps (x::l') 0). split.
{ hnf. exists (x :: l'), 0. repeat split; auto. }
intros b tmid H1; TMSimp. modpon H1. destruct b; auto; modpon H1.
- (* n=S n' and l = x :: l'; continue *)
exists (Nth'_Step_steps (x::l') (S n')). repeat split.
{ hnf. exists (x :: l'), (S n'). auto. }
intros b tmid H1. modpon H1. destruct b; auto; modpon H1. now destruct b.
exists (Nth'_Loop_steps l' n'). repeat split; auto; try omega.
hnf. exists l', n'. auto.
}
Qed.
We don't want to save, but reset, n.
Definition Nth' : pTM sig^+ bool 4 :=
LiftTapes (CopyValue _) [|Fin0; Fin3|];; (* Save l (on t0) to t3 *)
If (LiftTapes (Nth'_Loop) [|Fin3; Fin1; Fin2|]) (* Execute the loop with the copy of l *)
(Return (LiftTapes (Reset _) [|Fin3|];; (* Reset the copy of l *)
LiftTapes (Reset _) [|Fin1|] (* Reset n *)
) true)
(Return (LiftTapes (Reset _) [|Fin3|];; (* Reset the copy of l *)
LiftTapes (Reset _) [|Fin1|] (* Reset n *)
) false)
.
Definition Nth'_Rel : pRel sig^+ bool 4 :=
fun tin '(yout, tout) =>
forall (l : list X) (n : nat),
tin[@Fin0] ≃ l ->
tin[@Fin1] ≃ n ->
isRight tin[@Fin2] ->
isRight tin[@Fin3] ->
match yout with
| true =>
exists (x : X),
nth_error l n = Some x /\
tout[@Fin0] ≃ l /\
isRight tout[@Fin1] /\
tout[@Fin2] ≃ x /\
isRight tout[@Fin3]
| false =>
nth_error l n = None /\
tout[@Fin0] ≃ l /\
isRight tout[@Fin1] /\
isRight tout[@Fin2] /\
isRight tout[@Fin3]
end.
Lemma Nth'_Realise : Nth' ⊨ Nth'_Rel.
Proof.
eapply Realise_monotone.
{ unfold Nth'. TM_Correct.
- apply CopyValue_Realise with (X := list X).
- apply Nth'_Loop_Realise.
- apply Reset_Realise with (X := list X).
- apply Reset_Realise with (X := nat).
- apply Reset_Realise with (X := list X).
- apply Reset_Realise with (X := nat).
}
{
intros tin (yout, tout) H. cbn. intros l n HEncL HEncN HRight2 HRight3.
TMSimp. rename H into HCopy, H0 into HIf.
destruct HIf; TMSimp.
{ rename H into HLoop, H0 into HReset, H1 into HReset'.
modpon HCopy. modpon HLoop. destruct HLoop as (HLoop1&HLoop2&HLoop3&HLoop4&HLoop5).
modpon HReset. eexists; repeat split; eauto.
}
{ rename H into HLoop, H0 into HReset, H1 into HReset'.
modpon HCopy. modpon HLoop.
modpon HReset. eexists; repeat split; eauto.
}
}
Qed.
Definition Nth'_steps (l : list X) (n : nat) :=
3 + CopyValue_steps _ l + Nth'_Loop_steps l n + Reset_steps _ (skipn (S n) l) + Reset_steps _ (n - S (length l)).
Definition Nth'_T : tRel sig^+ 4 :=
fun tin k => exists (l : list X) (n : nat),
tin[@Fin0] ≃ l /\
tin[@Fin1] ≃ n /\
isRight tin[@Fin2] /\ isRight tin[@Fin3] /\
Nth'_steps l n <= k.
Lemma Nth'_Terminates : projT1 Nth' ↓ Nth'_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Nth'. TM_Correct.
- apply CopyValue_Realise with (X := list X).
- apply CopyValue_Terminates with (X := list X).
- apply Nth'_Loop_Realise.
- apply Nth'_Loop_Terminates.
- apply Reset_Realise with (X := list X).
- apply Reset_Terminates with (X := list X).
- apply Reset_Terminates with (X := nat).
- apply Reset_Realise with (X := list X).
- apply Reset_Terminates with (X := list X).
- apply Reset_Terminates with (X := nat).
}
{
intros tin k (l&n&HEncL&HEncN&HRigh2&HRight3&Hk). unfold Nth'_steps in *.
exists (CopyValue_steps _ l), (1 + Nth'_Loop_steps l n + 1 + Reset_steps _ (skipn (S n) l) + Reset_steps _ (n - S (length l))).
repeat split; cbn; try omega.
exists l. repeat split; eauto. unfold CopyValue_steps. now rewrite Encode_map_hasSize.
intros tmid () (HCopy&HInjCopy); TMSimp. modpon HCopy.
exists (Nth'_Loop_steps l n), (1 + Reset_steps _ (skipn (S n) l) + Reset_steps _ (n - S (length l))).
repeat split; cbn; try omega. 2: now rewrite !Nat.add_assoc.
{ hnf; cbn. eauto 6. }
intros tmid2 b (HLoop&HInjLoop); TMSimp. modpon HLoop. destruct b.
{
destruct HLoop as (x&HLoop); modpon HLoop.
exists (Reset_steps _ (skipn (S n) l)), (Reset_steps _ (n - S (length l))).
repeat split; cbn; try omega. 2: reflexivity.
do 1 eexists. repeat split; eauto. unfold Reset_steps. now rewrite Encode_map_hasSize.
intros tmid3 () (HReset&HInjReset); TMSimp. modpon HReset.
do 1 eexists. repeat split; eauto. unfold Reset_steps. now rewrite Encode_map_hasSize.
}
{
modpon HLoop.
exists (Reset_steps _ (skipn (S n) l)), (Reset_steps _ (n - S (length l))).
repeat split; cbn; try omega. 2: reflexivity.
do 1 eexists. repeat split; eauto. unfold Reset_steps. now rewrite Encode_map_hasSize.
intros tmid3 () (HReset&HInjReset); TMSimp. modpon HReset.
eexists; repeat split; eauto. now setoid_rewrite Reset_steps_comp.
}
}
Qed.
End Nth'.
Require Import TM.Basic.Mono TM.Code.Copy.
Lemma pair_eq (A B : Type) (a1 a2 : A) (b1 b2 : B) :
(a1, b1) = (a2, b2) ->
a1 = a2 /\ b1 = b2.
Proof. intros H. now inv H. Qed.
Section ListStuff.
Variable X : Type.
(* TODO: -> base *)
Lemma app_or_nil (xs : list X) :
xs = nil \/ exists ys y, xs = ys ++ [y].
Proof.
induction xs as [ | x xs IH]; cbn in *.
- now left.
- destruct IH as [ -> | (ys&y&->) ].
+ right. exists nil, x. cbn. reflexivity.
+ right. exists (x :: ys), y. cbn. reflexivity.
Qed.
(* TODO: -> base *)
Lemma map_removelast (A B : Type) (f : A -> B) (l : list A) :
map f (removelast l) = removelast (map f l).
Proof.
induction l as [ | a l IH]; cbn in *; auto.
destruct l as [ | a' l]; cbn in *; auto.
f_equal. auto.
Qed.
(* TODO: -> base *)
Corollary removelast_app_singleton (xs : list X) (x : X) :
removelast (xs ++ [x]) = xs.
Proof. destruct xs. reflexivity. rewrite removelast_app. cbn. rewrite app_nil_r. reflexivity. congruence. Qed.
(* TODO: -> base *)
Corollary removelast_length (xs : list X) :
length (removelast xs) = length xs - 1.
Proof.
destruct (app_or_nil xs) as [ -> | (x&xs'&->)].
- cbn. reflexivity.
- rewrite removelast_app_singleton. rewrite app_length. cbn. omega.
Qed.
End ListStuff.
LiftTapes (CopyValue _) [|Fin0; Fin3|];; (* Save l (on t0) to t3 *)
If (LiftTapes (Nth'_Loop) [|Fin3; Fin1; Fin2|]) (* Execute the loop with the copy of l *)
(Return (LiftTapes (Reset _) [|Fin3|];; (* Reset the copy of l *)
LiftTapes (Reset _) [|Fin1|] (* Reset n *)
) true)
(Return (LiftTapes (Reset _) [|Fin3|];; (* Reset the copy of l *)
LiftTapes (Reset _) [|Fin1|] (* Reset n *)
) false)
.
Definition Nth'_Rel : pRel sig^+ bool 4 :=
fun tin '(yout, tout) =>
forall (l : list X) (n : nat),
tin[@Fin0] ≃ l ->
tin[@Fin1] ≃ n ->
isRight tin[@Fin2] ->
isRight tin[@Fin3] ->
match yout with
| true =>
exists (x : X),
nth_error l n = Some x /\
tout[@Fin0] ≃ l /\
isRight tout[@Fin1] /\
tout[@Fin2] ≃ x /\
isRight tout[@Fin3]
| false =>
nth_error l n = None /\
tout[@Fin0] ≃ l /\
isRight tout[@Fin1] /\
isRight tout[@Fin2] /\
isRight tout[@Fin3]
end.
Lemma Nth'_Realise : Nth' ⊨ Nth'_Rel.
Proof.
eapply Realise_monotone.
{ unfold Nth'. TM_Correct.
- apply CopyValue_Realise with (X := list X).
- apply Nth'_Loop_Realise.
- apply Reset_Realise with (X := list X).
- apply Reset_Realise with (X := nat).
- apply Reset_Realise with (X := list X).
- apply Reset_Realise with (X := nat).
}
{
intros tin (yout, tout) H. cbn. intros l n HEncL HEncN HRight2 HRight3.
TMSimp. rename H into HCopy, H0 into HIf.
destruct HIf; TMSimp.
{ rename H into HLoop, H0 into HReset, H1 into HReset'.
modpon HCopy. modpon HLoop. destruct HLoop as (HLoop1&HLoop2&HLoop3&HLoop4&HLoop5).
modpon HReset. eexists; repeat split; eauto.
}
{ rename H into HLoop, H0 into HReset, H1 into HReset'.
modpon HCopy. modpon HLoop.
modpon HReset. eexists; repeat split; eauto.
}
}
Qed.
Definition Nth'_steps (l : list X) (n : nat) :=
3 + CopyValue_steps _ l + Nth'_Loop_steps l n + Reset_steps _ (skipn (S n) l) + Reset_steps _ (n - S (length l)).
Definition Nth'_T : tRel sig^+ 4 :=
fun tin k => exists (l : list X) (n : nat),
tin[@Fin0] ≃ l /\
tin[@Fin1] ≃ n /\
isRight tin[@Fin2] /\ isRight tin[@Fin3] /\
Nth'_steps l n <= k.
Lemma Nth'_Terminates : projT1 Nth' ↓ Nth'_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Nth'. TM_Correct.
- apply CopyValue_Realise with (X := list X).
- apply CopyValue_Terminates with (X := list X).
- apply Nth'_Loop_Realise.
- apply Nth'_Loop_Terminates.
- apply Reset_Realise with (X := list X).
- apply Reset_Terminates with (X := list X).
- apply Reset_Terminates with (X := nat).
- apply Reset_Realise with (X := list X).
- apply Reset_Terminates with (X := list X).
- apply Reset_Terminates with (X := nat).
}
{
intros tin k (l&n&HEncL&HEncN&HRigh2&HRight3&Hk). unfold Nth'_steps in *.
exists (CopyValue_steps _ l), (1 + Nth'_Loop_steps l n + 1 + Reset_steps _ (skipn (S n) l) + Reset_steps _ (n - S (length l))).
repeat split; cbn; try omega.
exists l. repeat split; eauto. unfold CopyValue_steps. now rewrite Encode_map_hasSize.
intros tmid () (HCopy&HInjCopy); TMSimp. modpon HCopy.
exists (Nth'_Loop_steps l n), (1 + Reset_steps _ (skipn (S n) l) + Reset_steps _ (n - S (length l))).
repeat split; cbn; try omega. 2: now rewrite !Nat.add_assoc.
{ hnf; cbn. eauto 6. }
intros tmid2 b (HLoop&HInjLoop); TMSimp. modpon HLoop. destruct b.
{
destruct HLoop as (x&HLoop); modpon HLoop.
exists (Reset_steps _ (skipn (S n) l)), (Reset_steps _ (n - S (length l))).
repeat split; cbn; try omega. 2: reflexivity.
do 1 eexists. repeat split; eauto. unfold Reset_steps. now rewrite Encode_map_hasSize.
intros tmid3 () (HReset&HInjReset); TMSimp. modpon HReset.
do 1 eexists. repeat split; eauto. unfold Reset_steps. now rewrite Encode_map_hasSize.
}
{
modpon HLoop.
exists (Reset_steps _ (skipn (S n) l)), (Reset_steps _ (n - S (length l))).
repeat split; cbn; try omega. 2: reflexivity.
do 1 eexists. repeat split; eauto. unfold Reset_steps. now rewrite Encode_map_hasSize.
intros tmid3 () (HReset&HInjReset); TMSimp. modpon HReset.
eexists; repeat split; eauto. now setoid_rewrite Reset_steps_comp.
}
}
Qed.
End Nth'.
Require Import TM.Basic.Mono TM.Code.Copy.
Lemma pair_eq (A B : Type) (a1 a2 : A) (b1 b2 : B) :
(a1, b1) = (a2, b2) ->
a1 = a2 /\ b1 = b2.
Proof. intros H. now inv H. Qed.
Section ListStuff.
Variable X : Type.
(* TODO: -> base *)
Lemma app_or_nil (xs : list X) :
xs = nil \/ exists ys y, xs = ys ++ [y].
Proof.
induction xs as [ | x xs IH]; cbn in *.
- now left.
- destruct IH as [ -> | (ys&y&->) ].
+ right. exists nil, x. cbn. reflexivity.
+ right. exists (x :: ys), y. cbn. reflexivity.
Qed.
(* TODO: -> base *)
Lemma map_removelast (A B : Type) (f : A -> B) (l : list A) :
map f (removelast l) = removelast (map f l).
Proof.
induction l as [ | a l IH]; cbn in *; auto.
destruct l as [ | a' l]; cbn in *; auto.
f_equal. auto.
Qed.
(* TODO: -> base *)
Corollary removelast_app_singleton (xs : list X) (x : X) :
removelast (xs ++ [x]) = xs.
Proof. destruct xs. reflexivity. rewrite removelast_app. cbn. rewrite app_nil_r. reflexivity. congruence. Qed.
(* TODO: -> base *)
Corollary removelast_length (xs : list X) :
length (removelast xs) = length xs - 1.
Proof.
destruct (app_or_nil xs) as [ -> | (x&xs'&->)].
- cbn. reflexivity.
- rewrite removelast_app_singleton. rewrite app_length. cbn. omega.
Qed.
End ListStuff.
Append
Section Append.
Variable (sigX : finType) (X : Type) (cX : codable sigX X).
Hypothesis (defX: inhabitedC sigX).
Notation sigList := (FinType (EqType (sigList sigX))) (only parsing).
Let stop : sigList^+ -> bool :=
fun x => match x with
| inl (START) => true (* halt at the start symbol *)
| _ => false
end.
Definition App'_Rel : Rel (tapes sigList^+ 2) (unit * tapes sigList^+ 2) :=
ignoreParam (fun tin tout =>
forall (xs ys : list X),
tin[@Fin0] ≃ xs ->
tin[@Fin1] ≃ ys ->
tout[@Fin0] ≃ xs /\
tout[@Fin1] ≃ xs ++ ys).
Definition App' : pTM sigList^+ unit 2 :=
LiftTapes (MoveRight _;; Move L;; Move L) [|Fin0|];;
CopySymbols_L stop.
Lemma App'_Realise : App' ⊨ App'_Rel.
Proof.
eapply Realise_monotone.
{ unfold App'. TM_Correct.
- apply MoveRight_Realise with (X := list X).
}
{
intros tin ((), tout) H. cbn. intros xs ys HEncXs HEncYs.
destruct HEncXs as (ls1&HEncXs), HEncYs as (ls2&HEncYs). TMSimp; clear_trivial_eqs.
rename H into HMoveRight; rename H0 into HCopy.
specialize (HMoveRight xs ltac:(repeat econstructor)) as (ls3&HEncXs'). TMSimp.
pose proof app_or_nil xs as [ -> | (xs'&x&->) ]; cbn in *; auto.
- rewrite CopySymbols_L_Fun_equation in HCopy; cbn in *. inv HCopy; TMSimp. repeat econstructor.
- cbv [Encode_list] in *; cbn in *.
rewrite encode_list_app in HCopy. cbn in *.
rewrite rev_app_distr in HCopy. rewrite <- tl_rev in HCopy. rewrite map_app, <- !app_assoc in HCopy.
rewrite <- tl_map in HCopy. rewrite map_rev in HCopy. cbn in *. rewrite <- app_assoc in HCopy. cbn in *.
rewrite !List.map_app, !List.map_map in HCopy. rewrite rev_app_distr in HCopy. cbn in *.
rewrite map_rev, tl_rev in HCopy.
rewrite app_comm_cons, app_assoc in HCopy. rewrite CopySymbols_L_correct_moveleft in HCopy; cbn in *; auto.
+ rewrite rev_app_distr, rev_involutive, <- app_assoc in HCopy. inv HCopy; TMSimp.
* rewrite <- app_assoc. cbn. repeat econstructor.
-- f_equal. cbn. rewrite encode_list_app. rewrite map_app, <- app_assoc.
cbn.
f_equal.
++ now rewrite rev_involutive, map_removelast.
++ f_equal. now rewrite map_app, List.map_map, <- app_assoc.
-- f_equal. cbn. rewrite !encode_list_app. rewrite rev_involutive, <- app_assoc.
cbn. rewrite <- app_assoc. cbn.
rewrite removelast_app, !map_app, <- !app_assoc, map_removelast. 2: congruence. f_equal.
setoid_rewrite app_assoc at 2. rewrite app_comm_cons. rewrite app_assoc. f_equal. f_equal.
rewrite map_removelast. cbn -[removelast]. rewrite map_app. cbn -[removelast].
rewrite app_comm_cons. rewrite removelast_app. 2: congruence. cbn. now rewrite List.map_map, app_nil_r.
+ cbn.
intros ? [ (?&<-&?) % in_rev % in_map_iff | H % in_rev ] % in_app_iff. cbn. auto. cbn in *.
rewrite rev_involutive, <- map_removelast in H.
apply in_app_iff in H as [ (?&<-&?) % in_map_iff | [ <- | [] ] ]. all: auto.
}
Qed.
Definition App'_steps (xs : list X) :=
29 + 12 * size _ xs.
Definition App'_T : tRel sigList^+ 2 :=
fun tin k => exists (xs ys : list X), tin[@Fin0] ≃ xs /\ tin[@Fin1] ≃ ys /\ App'_steps xs <= k.
Lemma App'_Terminates : projT1 App' ↓ App'_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold App'. TM_Correct. (* This is a bit strange, because App' is a sequence of two sequences. *)
- apply MoveRight_Realise with (X := list X).
- apply MoveRight_Realise with (X := list X).
- apply MoveRight_Terminates with (X := list X).
}
{
intros tin k (xs&ys&HEncXS&HEncYs&Hk). unfold App'_steps in *.
exists (12+4*size _ xs), (16+8*size _ xs). repeat split; cbn; try omega.
exists (8+4*size _ xs), 3. repeat split; cbn; try omega. eauto.
intros tmid1 () H. modpon H.
exists 1, 1. repeat split; try omega. eauto.
intros tmid (). intros H; TMSimp; clear_trivial_eqs. modpon H.
destruct H as (ls&HEncXs); TMSimp.
cbv [Encode_list]; cbn in *.
destruct (app_or_nil xs) as [-> | (xs'&x&->)]; cbn in *.
{ (* xs = nil *)
rewrite CopySymbols_L_steps_equation. cbn. omega.
}
{ (* xs = xs' ++ [x] *)
rewrite encode_list_app. rewrite rev_app_distr. cbn. rewrite <- app_assoc, rev_app_distr, <- app_assoc. cbn.
rewrite CopySymbols_L_steps_moveleft; cbn; auto.
rewrite map_length, !app_length, rev_length. cbn. rewrite map_length, rev_length, !app_length, !map_length. cbn.
rewrite removelast_length. omega.
}
}
Qed.
Definition App : pTM sigList^+ unit 3 :=
LiftTapes (CopyValue _) [|Fin1; Fin2|];;
LiftTapes (App') [|Fin0; Fin2|].
Lemma App_Computes : App ⊨ Computes2_Rel (@app X).
Proof.
eapply Realise_monotone.
{ unfold App. TM_Correct.
- apply CopyValue_Realise with (X := list X).
- apply App'_Realise.
}
{
intros tin ((), tout) H. cbn. intros xs ys HEncXs HEncYs HOut _.
TMSimp. rename H into HCopy; rename H0 into HComp.
specialize HCopy with (1 := HEncYs) (2 := HOut) as (HCopy1&HCopy2).
specialize HComp with (1 := HEncXs) (2 := HCopy2) as (HComp1&HComp2).
repeat split; auto.
- intros i; destruct_fin i.
}
Qed.
Definition App_steps (xs ys : list X) :=
55 + 12 * size _ xs + 12 * size _ ys.
Definition App_T : tRel sigList^+ 3 :=
fun tin k => exists (xs ys : list X), tin[@Fin0] ≃ xs /\ tin[@Fin1] ≃ ys /\ isRight tin[@Fin2] /\ App_steps xs ys <= k.
Lemma App_Terminates : projT1 App ↓ App_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold App. TM_Correct.
- apply CopyValue_Realise with (X := list X).
- apply CopyValue_Terminates with (X := list X).
- apply App'_Terminates.
}
{
intros tin k (xs&ys&HEncXs&HEnYs&HRigh2&Hk).
exists (25 + 12 * size _ ys), (App'_steps xs). repeat split; cbn; eauto.
unfold App'_steps, App_steps in *. omega.
intros tmid () (HApp'&HInjApp'); TMSimp. modpon HApp'.
hnf. cbn. do 2 eexists. repeat split; eauto.
}
Qed.
End Append.
Variable (sigX : finType) (X : Type) (cX : codable sigX X).
Hypothesis (defX: inhabitedC sigX).
Notation sigList := (FinType (EqType (sigList sigX))) (only parsing).
Let stop : sigList^+ -> bool :=
fun x => match x with
| inl (START) => true (* halt at the start symbol *)
| _ => false
end.
Definition App'_Rel : Rel (tapes sigList^+ 2) (unit * tapes sigList^+ 2) :=
ignoreParam (fun tin tout =>
forall (xs ys : list X),
tin[@Fin0] ≃ xs ->
tin[@Fin1] ≃ ys ->
tout[@Fin0] ≃ xs /\
tout[@Fin1] ≃ xs ++ ys).
Definition App' : pTM sigList^+ unit 2 :=
LiftTapes (MoveRight _;; Move L;; Move L) [|Fin0|];;
CopySymbols_L stop.
Lemma App'_Realise : App' ⊨ App'_Rel.
Proof.
eapply Realise_monotone.
{ unfold App'. TM_Correct.
- apply MoveRight_Realise with (X := list X).
}
{
intros tin ((), tout) H. cbn. intros xs ys HEncXs HEncYs.
destruct HEncXs as (ls1&HEncXs), HEncYs as (ls2&HEncYs). TMSimp; clear_trivial_eqs.
rename H into HMoveRight; rename H0 into HCopy.
specialize (HMoveRight xs ltac:(repeat econstructor)) as (ls3&HEncXs'). TMSimp.
pose proof app_or_nil xs as [ -> | (xs'&x&->) ]; cbn in *; auto.
- rewrite CopySymbols_L_Fun_equation in HCopy; cbn in *. inv HCopy; TMSimp. repeat econstructor.
- cbv [Encode_list] in *; cbn in *.
rewrite encode_list_app in HCopy. cbn in *.
rewrite rev_app_distr in HCopy. rewrite <- tl_rev in HCopy. rewrite map_app, <- !app_assoc in HCopy.
rewrite <- tl_map in HCopy. rewrite map_rev in HCopy. cbn in *. rewrite <- app_assoc in HCopy. cbn in *.
rewrite !List.map_app, !List.map_map in HCopy. rewrite rev_app_distr in HCopy. cbn in *.
rewrite map_rev, tl_rev in HCopy.
rewrite app_comm_cons, app_assoc in HCopy. rewrite CopySymbols_L_correct_moveleft in HCopy; cbn in *; auto.
+ rewrite rev_app_distr, rev_involutive, <- app_assoc in HCopy. inv HCopy; TMSimp.
* rewrite <- app_assoc. cbn. repeat econstructor.
-- f_equal. cbn. rewrite encode_list_app. rewrite map_app, <- app_assoc.
cbn.
f_equal.
++ now rewrite rev_involutive, map_removelast.
++ f_equal. now rewrite map_app, List.map_map, <- app_assoc.
-- f_equal. cbn. rewrite !encode_list_app. rewrite rev_involutive, <- app_assoc.
cbn. rewrite <- app_assoc. cbn.
rewrite removelast_app, !map_app, <- !app_assoc, map_removelast. 2: congruence. f_equal.
setoid_rewrite app_assoc at 2. rewrite app_comm_cons. rewrite app_assoc. f_equal. f_equal.
rewrite map_removelast. cbn -[removelast]. rewrite map_app. cbn -[removelast].
rewrite app_comm_cons. rewrite removelast_app. 2: congruence. cbn. now rewrite List.map_map, app_nil_r.
+ cbn.
intros ? [ (?&<-&?) % in_rev % in_map_iff | H % in_rev ] % in_app_iff. cbn. auto. cbn in *.
rewrite rev_involutive, <- map_removelast in H.
apply in_app_iff in H as [ (?&<-&?) % in_map_iff | [ <- | [] ] ]. all: auto.
}
Qed.
Definition App'_steps (xs : list X) :=
29 + 12 * size _ xs.
Definition App'_T : tRel sigList^+ 2 :=
fun tin k => exists (xs ys : list X), tin[@Fin0] ≃ xs /\ tin[@Fin1] ≃ ys /\ App'_steps xs <= k.
Lemma App'_Terminates : projT1 App' ↓ App'_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold App'. TM_Correct. (* This is a bit strange, because App' is a sequence of two sequences. *)
- apply MoveRight_Realise with (X := list X).
- apply MoveRight_Realise with (X := list X).
- apply MoveRight_Terminates with (X := list X).
}
{
intros tin k (xs&ys&HEncXS&HEncYs&Hk). unfold App'_steps in *.
exists (12+4*size _ xs), (16+8*size _ xs). repeat split; cbn; try omega.
exists (8+4*size _ xs), 3. repeat split; cbn; try omega. eauto.
intros tmid1 () H. modpon H.
exists 1, 1. repeat split; try omega. eauto.
intros tmid (). intros H; TMSimp; clear_trivial_eqs. modpon H.
destruct H as (ls&HEncXs); TMSimp.
cbv [Encode_list]; cbn in *.
destruct (app_or_nil xs) as [-> | (xs'&x&->)]; cbn in *.
{ (* xs = nil *)
rewrite CopySymbols_L_steps_equation. cbn. omega.
}
{ (* xs = xs' ++ [x] *)
rewrite encode_list_app. rewrite rev_app_distr. cbn. rewrite <- app_assoc, rev_app_distr, <- app_assoc. cbn.
rewrite CopySymbols_L_steps_moveleft; cbn; auto.
rewrite map_length, !app_length, rev_length. cbn. rewrite map_length, rev_length, !app_length, !map_length. cbn.
rewrite removelast_length. omega.
}
}
Qed.
Definition App : pTM sigList^+ unit 3 :=
LiftTapes (CopyValue _) [|Fin1; Fin2|];;
LiftTapes (App') [|Fin0; Fin2|].
Lemma App_Computes : App ⊨ Computes2_Rel (@app X).
Proof.
eapply Realise_monotone.
{ unfold App. TM_Correct.
- apply CopyValue_Realise with (X := list X).
- apply App'_Realise.
}
{
intros tin ((), tout) H. cbn. intros xs ys HEncXs HEncYs HOut _.
TMSimp. rename H into HCopy; rename H0 into HComp.
specialize HCopy with (1 := HEncYs) (2 := HOut) as (HCopy1&HCopy2).
specialize HComp with (1 := HEncXs) (2 := HCopy2) as (HComp1&HComp2).
repeat split; auto.
- intros i; destruct_fin i.
}
Qed.
Definition App_steps (xs ys : list X) :=
55 + 12 * size _ xs + 12 * size _ ys.
Definition App_T : tRel sigList^+ 3 :=
fun tin k => exists (xs ys : list X), tin[@Fin0] ≃ xs /\ tin[@Fin1] ≃ ys /\ isRight tin[@Fin2] /\ App_steps xs ys <= k.
Lemma App_Terminates : projT1 App ↓ App_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold App. TM_Correct.
- apply CopyValue_Realise with (X := list X).
- apply CopyValue_Terminates with (X := list X).
- apply App'_Terminates.
}
{
intros tin k (xs&ys&HEncXs&HEnYs&HRigh2&Hk).
exists (25 + 12 * size _ ys), (App'_steps xs). repeat split; cbn; eauto.
unfold App'_steps, App_steps in *. omega.
intros tmid () (HApp'&HInjApp'); TMSimp. modpon HApp'.
hnf. cbn. do 2 eexists. repeat split; eauto.
}
Qed.
End Append.
Instead of defining Length on the alphabet sigList sigX + sigNat, we can define Length on any alphabet sig and assume a retracts from sigList sigX to tau and from sigNat to tau. This makes the invocation of the machine more flexible for a client.
Variable sig sigX : finType.
Variable (X : Type) (cX : codable sigX X).
Variable (retr1 : Retract (sigList sigX) sig) (retr2 : Retract sigNat sig).
Definition Length_Step : pTM sig^+ (option unit) 3 :=
If (LiftTapes (ChangeAlphabet (CaseList _) _) [|Fin0; Fin2|])
(Return (LiftTapes (Reset _) [|Fin2|];;
LiftTapes (ChangeAlphabet (Constr_S) _) [|Fin1|])
(None)) (* continue *)
(Return Nop (Some tt)) (* break *)
.
Definition Length_Step_Rel : pRel sig^+ (option unit) 3 :=
fun tin '(yout, tout) =>
forall (xs : list X) (n : nat),
tin[@Fin0] ≃ xs ->
tin[@Fin1] ≃ n ->
isRight tin[@Fin2] ->
match yout, xs with
| (Some tt), nil => (* break *)
tout[@Fin0] ≃ nil /\
tout[@Fin1] ≃ n /\
isRight tout[@Fin2]
| None, _ :: xs' => (* continue *)
tout[@Fin0] ≃ xs' /\
tout[@Fin1] ≃ S n /\
isRight tout[@Fin2]
| _, _ => False
end.
Lemma Length_Step_Realise : Length_Step ⊨ Length_Step_Rel.
Proof.
eapply Realise_monotone.
{ unfold Length_Step. TM_Correct.
- apply Reset_Realise with (X := X).
}
{
intros tin (yout, tout) H. cbn. intros xs n HEncXS HEncN HRight.
destruct H; TMSimp.
{ (* Then *) rename H into HCaseList, H0 into HReset, H1 into HS.
modpon HCaseList. destruct xs as [ | x xs']; cbn in *; auto; modpon HCaseList.
modpon HReset. modpon HS. repeat split; auto.
}
{ (* Then *) rename H into HCaseList.
modpon HCaseList. destruct xs as [ | x xs']; cbn in *; auto; modpon HCaseList. repeat split; auto.
}
}
Qed.
Definition Length_Step_steps (xs : list X) :=
match xs with
| nil => 1 + CaseList_steps_nil
| x :: xs' => 2 + CaseList_steps_cons _ x + Reset_steps _ x + Constr_S_steps
end.
Definition Length_Step_T : tRel sig^+ 3 :=
fun tin k => exists (xs : list X) (n : nat), tin[@Fin0] ≃ xs /\ tin[@Fin1] ≃ n /\ isRight tin[@Fin2] /\ Length_Step_steps xs <= k.
Lemma Length_Step_Terminates : projT1 Length_Step ↓ Length_Step_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Length_Step. TM_Correct.
- apply Reset_Realise with (X := X).
- apply Reset_Terminates with (X := X).
}
{
intros tin k (xs&n&HEncXs&HEncN&HRight2&Hk). unfold Length_Step_steps in Hk.
destruct xs as [ | x xs'].
- exists CaseList_steps_nil, 0. repeat split; cbn in *; try omega.
eexists; repeat split; simpl_surject; eauto; cbn; eauto.
intros tmid b (HCaseList&HInjCaseList); TMSimp. modpon HCaseList. destruct b; cbn in *; auto.
- exists (CaseList_steps_cons _ x), (1 + Reset_steps _ x + Constr_S_steps). repeat split; cbn in *; try omega.
eexists; repeat split; simpl_surject; eauto; cbn; eauto.
intros tmid b (HCaseList&HInjCaseList); TMSimp. modpon HCaseList. destruct b; cbn in *; auto; modpon HCaseList.
exists (Reset_steps _ x), Constr_S_steps. repeat split; cbn; try omega.
eexists; repeat split; simpl_surject; eauto; cbn; eauto. unfold Reset_steps. now rewrite !Encode_map_hasSize.
now intros _ _ _.
}
Qed.
Definition Length_Loop := While Length_Step.
Definition Length_Loop_Rel : pRel sig^+ unit 3 :=
ignoreParam (
fun tin tout =>
forall (xs : list X) (n : nat),
tin[@Fin0] ≃ xs ->
tin[@Fin1] ≃ n ->
isRight tin[@Fin2] ->
tout[@Fin0] ≃ nil /\
tout[@Fin1] ≃ n + length xs /\
isRight tout[@Fin2]
).
Lemma Length_Loop_Realise : Length_Loop ⊨ Length_Loop_Rel.
Proof.
eapply Realise_monotone.
{ unfold Length_Loop. TM_Correct.
- apply Length_Step_Realise.
}
{
apply WhileInduction; intros; intros xs n HEncXS HEncN HRight; TMSimp.
{
modpon HLastStep.
destruct xs as [ | x xs']; auto; TMSimp.
cbn. rewrite Nat.add_0_r. repeat split; auto.
}
{
modpon HStar.
destruct xs as [ | x xs']; auto; TMSimp.
modpon HLastStep.
rewrite Nat.add_succ_r.
repeat split; auto.
}
}
Qed.
Fixpoint Length_Loop_steps (xs : list X) : nat :=
match xs with
| nil => Length_Step_steps xs
| x :: xs' => S (Length_Step_steps xs) + Length_Loop_steps xs'
end.
Definition Length_Loop_T : tRel sig^+ 3 :=
fun tin k => exists (xs : list X) (n : nat), tin[@Fin0] ≃ xs /\ tin[@Fin1] ≃ n /\ isRight tin[@Fin2] /\ Length_Loop_steps xs <= k.
Lemma Length_Loop_Terminates : projT1 Length_Loop ↓ Length_Loop_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Length_Loop. TM_Correct.
- apply Length_Step_Realise.
- apply Length_Step_Terminates. }
{
apply WhileCoInduction. intros tin k (xs&n&HEncXs&HEncN&HRight2&Hk). exists (Length_Step_steps xs). repeat split.
- hnf. do 2 eexists. repeat split; eauto.
- intros b tmid HStep. hnf in HStep. modpon HStep. destruct b as [ () | ], xs as [ | x xs']; cbn in *; auto; modpon HStep.
eexists (Length_Loop_steps xs'). repeat split; try omega. hnf. exists xs', (S n). repeat split; eauto.
}
Qed.
Definition Length : pTM sig^+ unit 4 :=
LiftTapes (CopyValue _) [|Fin0; Fin3|];;
LiftTapes (ChangeAlphabet Constr_O _) [|Fin1|];;
LiftTapes (Length_Loop) [|Fin3; Fin1; Fin2|];;
LiftTapes (ResetEmpty1 _) [|Fin3|].
Lemma Length_Computes : Length ⊨ Computes_Rel (@length X).
Proof.
eapply Realise_monotone.
{ unfold Length. TM_Correct.
- apply CopyValue_Realise with (X := list X).
- apply Length_Loop_Realise.
- eapply RealiseIn_Realise. apply ResetEmpty1_Sem with (X := list X).
}
{
intros tin ((), tout) H. intros xs HEncXs Hout HInt2. specialize (HInt2 Fin1) as HInt3; specialize (HInt2 Fin0).
TMSimp. modpon H. modpon H0. modpon H1. modpon H2. modpon H3.
repeat split; auto. intros i; destruct_fin i; auto. now TMSimp.
}
Qed.
Definition Length_steps (xs : list X) := 36 + 12 * size _ xs + Length_Loop_steps xs.
Definition Length_T : tRel sig^+ 4 :=
fun tin k => exists (xs : list X), tin[@Fin0] ≃ xs /\ isRight tin[@Fin1] /\ isRight tin[@Fin2] /\ isRight tin[@Fin3] /\ Length_steps xs <= k.
Lemma Length_Terminates : projT1 Length ↓ Length_T.
Proof.
eapply TerminatesIn_monotone.
{ unfold Length. TM_Correct.
- apply CopyValue_Realise with (X := list X).
- apply CopyValue_Terminates with (X := list X).
- apply Length_Loop_Realise.
- apply Length_Loop_Terminates.
- eapply RealiseIn_TerminatesIn. apply ResetEmpty1_Sem.
}
{
intros tin k (xs&HEncXs&HRight1&HRight2&HRigth3&Hk). unfold Length_steps in *.
exists (25 + 12 * size _ xs), (10 + Length_Loop_steps xs). repeat split; cbn; try omega.
eexists. repeat split; eauto. unfold CopyValue_steps. now rewrite Encode_map_hasSize.
intros tmid () (HO&HOInj); TMSimp. modpon HO.
exists 5, (4 + Length_Loop_steps xs). unfold Constr_O_steps. repeat split; cbn; try omega.
intros tmid0 () (HLoop&HLoopInj); TMSimp. modpon HLoop.
exists (Length_Loop_steps xs), 3. repeat split; cbn; try omega.
hnf. cbn. do 2 eexists. repeat split; eauto.
now intros _ _ _.
}
Qed.
End Lenght.